Transaction Management 1
DBMS

(t;;"r: ‘;::!_ application n’?:::_?'d database
web-users) programmers (analysts) administeator

use wnte use use

application application query administration
interfaces programs tools toots

:wv;'nr;tr;and DML queries I I DOL interpreter |
application
pragram DML compiler

object code and arganizer

guery processar

/ [i N

Mhrmngﬁr [file merzager] ::l::'\:;::: | tm:;t:n |

k ft/

I‘ disk storage

statistical data
=t

A\ A transaction is a unit of program execution that accesses and possibly updates various data items.
[1] A transaction must see a consistent database.

[2] During transaction execution the database may be temporarily inconsistent.

[3] When the transaction completes successfully (is committed), the database must be consistent.

[4] After a transaction commits, the changes it has made to the database persist, even if there are system
failures.

A Two main issues to deal with in transaction management:
[1] Concurrent execution (FF17#117) of multiple transactions
Serializability (2] & 1714)
Two phase locking (ZH£%i{3%)
Two phase commits (Z 4812 353%)
[2] Recovery from failures of various kinds, such as hardware failures and system crashes
Recovery algorithms

A\ ACID Properties:
[A] Atomicity: Either all operations of the transaction are properly reflected in the database or none are.

(BT BAESHNEERERERDRRAESIEESD, BA— P EEE]

[C] Consistency: Execution of a transaction in isolation preserves the consistency of the database.

[—EtE: MIHITES I DURFSEIR R — B

[17 Isolation: Although multiple transactions may execute concurrently, each transaction must be unaware of

other concurrently executing transactions. Intermediate transaction results must be hidden from other
concurrently executed transactions.

PEE: REZNESTNUFLNT, EENESOIAAMEEMHZNITHNES PREIESER DI HMA
HERHPITHNESRRE]

[D] Durability: After a transaction completes successfully, the changes it has made to the database persist,
even if there are system failures.

FAMZESRNENRE, ENEEEMMNERRFSAE, ETERGYNE]

A Transaction state:

partially

Active — the initial state; the transaction stays in this cBmmited

state while it is executing

Partially committed — after the final statement has
been executed.

Failed — normal execution can no longer proceed.
Aborted - after the transaction has been rolled back
and the database restored to its state prior to the
start of the transaction.

Committed — after successful completion.

A Multiple transactions are allowed to run concurrently in the system. Advantages are:

[1] Increased processor and disk utilization, leading to better transaction throughput: one transaction can
be using the CPU while another is reading from or writing to the disk.
[2] Reduced average response time for transactions: short transactions need not wait behind long ones.

Concurrency control schemes — mechanisms to achieve isolation; that is, to control the interaction among
the concurrent transactions in order to prevent them from destroying the consistency of the database.

[FFREHTIR---SLABBONG, EHFLFESZENZE, UF eI SR E N —EH]

A\ Schedule [IEE] - A sequence of instructions that specifies the chronological order in which concurrent
transactions are executed
(1) a schedule for a set of transactions must consist of all instructions of those transactions
(BT IER]
(2) must preserve the order in which the instructions appear in each individual transaction
[FRE 45 W HE 7
A transaction that successfully completes its execution will have a commit instruction as the last statement
(will be omitted if it is obvious)
A transaction that fails to successfully complete its execution will have an abort instruction as the last
statement (will be omitted if it is obvious)

A Data Access [£1357F]
Physical blocks are those blocks residing on the disk.
Buffer blocks are the blocks residing temporarily in main memory.
Block movements between disk and main memory are initiated through the following two operations:
[1] input(B) transfers the physical block B to main memory (buffer).
[2] output(B) transfers the buffer block B to the disk, and replaces the appropriate physical block.

buffer
Buffer Block A ——LX | input(A)
Buffer Block B —— ——»[]B
output(B)
read(X)
rite(Y)
X
X1 é/ 2‘]
Y1
work area work area
of T, of T,
memory disk

Take an example of schedule - let A=1,000, B=2,000. Let T1 transfer $50 from A to B, and T2 transfer 10%

of the balance from A to B.

Schedule 1 and 2 are all serial schedule:

T, T,

read (A)

A=A-50

write (A)

read (B)

B:=B+50

write (B)

commit
read (A)
temp :==A* 0.1
A=A -temp
write (A)
read (B)
B =B+ temp
write (B)
commit

T1 is followed by T2
A=855, B=2145, A+B=3000
Schedule 3 and 4 are all not serial schedule:

T, T,

read (A)

A=A-50

write (A)
read (A)
temp :=A*0.1
A=A -temp
write (A)

read (B)

B:=B+50

write (B)

commit
read (B)
B =B+ temp
write (B)
commit

equivalent to example schedule 1
A=850, B=2150, A+B=3000

T, T,

read (A)
temp :==A*0.1
A=A -temp
write (A)
read (B)
B =B+ temp
write (B)
commit

read (A)

A=A-50

write (A)

read (B)

B:=B+50

write (B)

commit

T2 is followed by T1
A=850, B=2150, A+B=3000

T, T,

read (A)

A=A-50
read (A)
temp :=A*0.1
A=A-temp
write (A)
read (B)

write (A)

read (B)

B=B+50

write (B)

commit
B =B+ temp
write (B)
commit

chaos schedule(&H G EE ZHIE)
A=950, B=2100, A+B=3050

Transaction Management 2
A Serializability [T 8 171%]

Basic Assumption — Each transaction preserves database consistency.
[BERRR—B N ESRTBIEE B
A (possibly concurrent) schedule is serializable if it is equivalent to a serial schedule. Different forms of
schedule equivalence give rise to the notions of:

conflict serializability 1580 & {714]

view serializability [0 & o] & 71k]
We ignore operations other than read and write instructions for now for simplicity.
We assume that transactions may perform arbitrary (&= AY) computations on data in local buffers in
between reads and writes.

A Conflicts [Hh5E]
Three kinds of conflicts can be identified:
write-read (WR) conflict: reading uncommitted data (or dirty read)

read-write (RW) conflict: unrepeatable reads

write-write (WW) conflict: overwriting uncommitted data (or blind write)

Intuitively, a conflict between li and |j forces a (logical) temporal order between them.

If li and lj are consecutive in a schedule and they do not conflict, their results would remain the same even if
they had been interchanged in the schedule (the two instructions can be swapped).

read(4)
A=A4-50
write(A)
read(A4)
A=A+ A*10% . . -
write(4) Transaction T2 reads a database object that has been modified by
read(B) . . . w g "
B= B+ B*10% transaction T1 which has not committed (“dirty read”)
write(B)
commit
read(B)
B:=B+50
write(B)
Rollback
read(4)
read(4)
A:=A-1
write(4) Transaction T2 could change the value of an object that has been read by a
commit
read(A) transaction T1, while T1 is still in progress (unrepeatable read)
A:=A-1
write(4)
commit
write(Steven)
write(Paul) Transaction T2 could overwrite the value of an object which has already
:g;’ﬁ:eve") been modified by T1, while T1 is still in progress. (Blind Write)

write(Paul)
commit

A Conflict Serializability 152 T] & 174k]
If a schedule S can be transformed into a schedule S” by a series of swaps of non-conflicting instructions, we
say that S and S™ are conflict equivalent. A schedule S is conflict serializable if it is conflict equivalent to a

serial schedule.

(AR EFEZ S T OB — R RIS

MRIFE S R RENTETRE, B4

AETFEAR T BT

VExample of a schedule that is conflict serializable

Ty I3
read(A)
write(A)
read(A)
write(A)
read(B)
write(B)
read(B)
write(B)

swaps of non-conflicting
instructions.

I T,

read(A)

write(A)

read(B)

write(B)
read(A)
write(A)
read(B)
write(B)

IExample of a schedule that is not conflict serializable 4

T; Ty
read(Q)
write(Q)
write(Q)

A Testing for Serializability [T] & 171 9:M1xt]
Consider a schedule with a set of transactionsT1, T2, ..., Tn

Precedence graph — a directed graph where:

vertices are the transactions (names)

an arc (edge) is drawn from Ti to Tj if the two transactions conflict

Ti accesses the same data item before Tj does

A schedule is conflict serializable if and only if its precedence graph is acyclic

(i.e., no loops). [B E A& &)

Cycle-detection algorithms [[E]B&M & 5%

Some take order nA2 time, where n is the number of vertices in the graph.

Better ones take order n + e where e is the number of edges.

If precedence graph is acyclic, the serializability order can be obtained by a

topological sorting of the graph. [BIZHRFMEFE R R TLER]
(Could have more than one serializability orders)

It is possible for two schedules to produce the same outcome, but are

not conflict serializable.

M HEFRISCEL (python) _von Libniz 9152 -CSDN {85 RMEF

SAVACRC)

(b)

python

A View Serializability [¥8E o & {74k]
Let S and S” be two schedules with the same set of transactions. S and S” are view equivalent if the following
three conditions are met, for each data item Q:
(1) If in schedule S, transaction Ti reads the initial value of Q, then in schedule S’ also transaction Ti must read the initial value

of Q.

LR — AR ST, AT S F1 SR RFMN,

()

(9

https://blog.csdn.net/Demon_LMMan/article/details/118416795?ops_request_misc=%257B%2522request%255Fid%2522%253A%2522166835851816782390515608%2522%252C%2522scm%2522%253A%252220140713.130102334..%2522%257D&request_id=166835851816782390515608&biz_id=0&utm_medium=distribute.pc_search_result.none-task-blog-2~all~top_positive~default-2-118416795-null-null.142%5ev63%5econtrol,201%5ev3%5econtrol_2,213%5ev2%5et3_control2&utm_term=%E6%8B%93%E6%89%91%E6%8E%92%E5%BA%8Fpython&spm=1018.2226.3001.4187

(2) If in schedule S transaction Ti executes read(Q), and that value was produced by transaction Tj (if any), then in schedule S’
also transaction Ti must read the value of Q that was produced by the same write(Q) operation of transaction Tj .

(3) The transaction (if any) that performs the final write(Q) operation in schedule S must also perform the final write(Q)
operation in schedule S'.

As can be seen, view equivalence is also based purely on reads and writes alone.

A Difference between view serializable and conflict sterilizable [~[E]

A schedule S is view serializable if it is view equivalent to a serial schedule. Every conflict serializable schedule
is also view serializable but not vice versa (fiE kAR 37).

Below is a schedule which is view-serializable but not conflict serializable:

t, | 1 | T T [Tw | T
= _ _ read(Q
read (Q) write(((;)
write (Q) =
write (Q) write(Q)
write (Q) write(Q)

<T27,T28, T29> is equivalent serial schedule
Every view serializable schedule that is not conflict serializable has blind writes.

A blind write is a write operation e.g. W (X) by a transaction Ti after which the attribute X is not read by a
transaction but some other transaction Tj performs another write operation on attribute X. Thus, the write
operation by Ti becomes blind write. [fE5E TS BI# H © /Y transaction #{E 7 [E—) attribute]

A Test for View Serializability [Jllix]

The problem of checking if a schedule is view serializable falls in the class of NP-complete problems. (Thus,
existence of an efficient algorithm is extremely unlikely)

However practical algorithms that just ck.]eck some sufficient conditions for view serializability can still be
used.)

A Recoverable Schedules [E['1k & E9iEE]

Recoverable schedule — if a transaction Tj reads a data item previously written by a T ’ T
transaction Ti, then the commit operation of Ti appears before the commit operation of read(4)
Tj write(A)
. . .) read(A)
If T6 should abort, T7 would have read (and possibly shown to the user) an inconsistent commit
read(B)

database state.
Hence, database must ensure that schedules are recoverable. /

X E& Unrecoverable schedule, ¥F— recoverable iy schedule €%, tHR—MNRAEMBIN—"EEN
ERPIEEEGE, BATHIAERINAUFEER commit Z 5 commit

Cascading rollback [Z¢BX[E3%E] — a single transaction failure leads to a series of transaction rollbacks.
Consider schedule <T10/T11/T12> where none of the transactions has yet committed.

If T10 fails (aborted later and needs to roll back), T11 and T12 must also be rolled back.

Can lead to the undoing [8% K] of a significant amount of work

TlO T‘J] T‘IZ
read(A)
read(B)
write(A)
read(A)
write(A)
read(A)

A, 1E“i£1ttﬂ“ T10 HUTSE UEHIL T abort, FPAFAEFIEEDR T10,FREIR T9,FELR T8 FELFRAY
BRIERI, =—MRKWNER, MADRIEFRE, REHKE 18 EXINEER commit, BETIXET
Tﬁ?v%lﬁT, %EIJ@%‘%&EJ‘L?J?%Z‘EE% (ElEIR) SRR N—IPEN, SFRRIEFR, #5F wiite TG
commit —X.

Cascadeless schedules [TCZ%EXIEE] — cascading rollbacks cannot occur; for each pair of transactions Ti
and Tj such that Tj reads a data item previously written by Ti, the commit operation of Ti appears before the
read operation of Tj. [EBU BT BEEIER L IE E IR ZHVIRE]

Dirty Read not allowed, means reading the data written by an uncommitted transaction is not allowed. Lost
Update problem may occur. [RAIFIERBARIZEZESFSENNEIE, TS B EREREH]

Every cascadeless schedule is also recoverable.

It is desirable to restrict the schedules to those that are cascadeless. [§ &4 18R # 7 ABLE TR ELAE £

o T E{TIL: XTF— transaction i 7UE R EIATEAE, RI7EE X = RIPAT A SR BISE
commit ZB] Foik EHT

o TJEEL XA transaction TEHITAIRME A TFEANEHE, EARRVHEMNEIEEX.

o BB XMEHETUAITFREAT—NELER THEHE, EEASKXNEIREERIARE.
o RIBZEL: BIAVFAEE, TJINEBZIRWIRIZNEIE.

Reference: Cascadeless in DBMS - GeeksforGeeks

HOREIEWEIL 18 Tk EMIAE -IERAMIAE AR %R - duskcloudxu - % F (cnblogs.com)

https://www.geeksforgeeks.org/cascadeless-in-dbms/
https://www.cnblogs.com/stultus/p/7018356.html

