Query Introduction 2

(This part is pretty hard to understand and record, so please have a look at the original pdf file)
Introduction:

= 7. number of tuples in a relation r.

= b, number of blocks containing tuples of r.

= /: size of a tuple of .

= .- blocking factor of r i.e., the number of tuples of r
that fit into one block.

= WA, r): number of distinct values that appear in r for
attribute A, same as the size of [14(r).

= If tuples of rare stored together physically in a file,

then:

n,.
=1 %
br_ ahy

I

Estimation of the Size of Joins

= The Cartesian product r x s contains 7,.n, tuples; each
tuple occupies s, * s, bytes.

s If RN S=O, then rix sis the sameas r x s.

» If RN Sisakey for R, then a tuple of swill join with at
most one tuple from r

= therefore, the number of tuples in 7 [sis no greater than the
number of tuples in s.

» If RN Sisaforeign key in Sreferencing R, then the
number of tuples in 7 X sis exactly the same as the
number of tuples in s.

= The case for RN Sbeing a foreign key referencing Sis
symmetric.

A\ Banking example of estimate the size of joins:

branch account depositor customer

branch—name {—l_ account_number 4_1_ customer—name customer—name

: "anc > °Co her customer_street
branch_cify branch_name account_number s stre
: balance customer—city

Y

assets

loan borrower

loan—_number <—|— customer—name

branch_name loan_number
amount

= Number of records of customer. 10,000

* Number of blocks of customer: 400

* Number of records of depositor: 5,000

* Number of blocks of depositor: 100

* In the example query “depositor 1 customer”,
customer_name in depositoris a foreign key (of customer),
hence, the result has exactly /14,0510~ tuples, which is 5000.

I #ig
V(A,S)

Also, we can calculate it as:

® Nusroner = 10,000.
Foenee = 25, which implies that b..,,..=10,000/25 = 400.
8 Npeposiror = 5000

Fipoere = DO, which implies that b,,....= 5,000/50 = 100.

Wcustomer_name, depositor)= 2,500, which implies that,
on average, each customer has two accounts.

V(customer_name, customer) = 10,000 (primary key)
There have two estimates which are (10000+x5000)/2500=20000 and (10000«5000)/10000=5000, choose the
min of them.

A\ Some other specific method of V(A, r):
To. (v Toalr) = 0/@‘ g2 (1)

rds = r 45
estimote 512€ = mnl(Y,5$)

rns
on different velotians
¥=§ = T

O forces P o tke a gecifid velue VA, Tg(r)) = this volue

i dhe selecton cdfrg s A ogpie v den V/(p, g0
Ca, 7z, %) Y
V(iR r)xs

'for Oﬂ‘(oP 'ﬂm 5 , \Me 0?{:9"(VCA) f) 2 n{pcr))
1

(miny ok,)

1 oll ottribetes in A ore fron v dhen Vi, rws) = mn [\/Cﬁ,d) o)

_ P from
15 A { then
A gom s

Ve, rvas) = min (Vewrr) Vb=, Vim0 -Vt) Ry es)

A\ For how to evaluate the algorithm:

NFE—IMHR, EREREENTERA—ES—RRLE.

s BERMANITY, FUSAAEMNTRNERERFOITN, FERBERTTEREF—MT
.

FERDSANEFELTEINERUBD AR ENITE, KBNS ETRIEATENLL, MREHR
ERMNEENEBR.

A\ The logical of optimization algorithm:

// initialise bestplan[S].cost to e
procedure findbestplan(s)
if (bestplan] S).cost+)
return bestplan] S]
// else bestplan[S] has not been computed earlier, compute it how
if (S contains only 1 relation)
set bestplan] S).plan and bestplan] S].cost based on the best way
of accessing S /* Using selections on S, e.g. indices on S */
else for each non-empty subset Sl of Ssuch that Sl = S
P1= findbestplan(S1)
P2= findbestplan(s - S1)
A = best algorithm for joining results of Al and P2
cost = Pl.cost+ P2.cost+ cost of A
if cost< bestplan] S].cost
bestplan] S).cost = cost
bestplan] S).plan = “execute Al.plan; execute P2.plan;
join results of Al and P2 using A"
return bestplan] 5]

A\ Cost-Based Optimization with Equivalence Rules [& #1049 5% A 4k]

AEB(EF heuristic (JB&TN) KA join Z MNP R, ¥ Cost-Based Optimization H7E join # selection,
Cost-Based Optimization {RE S BHFH MUY BRILMUFIREEBABDNEEEE, EERNERBEFNFIEL
MidERIET BT,

Cost-Based Optimization By T 1T AR EEMFTIEARMFXITR], BFCZERAzZSR, HES
B 4RFE

A\ Heuristic Optimization [[B& Rt]

—ERGRABAR, FLRRANSETRANKMAETFF.

FABANERDERENRE, BETHRANLAEREBNSMUBEFEBRA,
BEARNREHITERE(R D TANEE). RENTRERDBHNEE). ERTEMECUREZFIHITR
IR KM FFIEERIEEIE R K/ MR NVIRE).

HEMBRR:

In left-deep join trees, the right-hand-side input for
each join is a relation, not the result of an
intermediate join.

rl r2

(a) Left-deep join tree (b) Non-left-deep join tree

Cost of using heuristic:

If only left-deep trees are considered, time complexity of finding best join order is O(n!), with dynamic
programming this can be reduced to O(n*2/\n), Space complexity remains at O(2/\n)

Cost-based optimization R, EREETE—NEFANHEENXZESH
—RAUBZNEENTEFEAEENBRR, MRRNEEERFRARE.

