Query Introduction 1

A B XKEFD IRATTLE:
Materialization(E{&1k): generate results of an expression whose inputs are relations or relations that are
already computed. Temporary relations must be materialized (stored) on disk.

[ERRETNNER, EARASEETELINXR. IHNXRLM LI E%E L)
I1

customer-name

X

S palance < 2500 custome

account

(1) BEEAEEMERTETIULI, RALTEFERRRNAFSE,

(2) EAX buffer 16, SRFEEAR M EHERIX, S—PMERXEN, BEBEAZ—, XHHEE
ATHBBENSHEES, FRDHITHIE,
Overall cost = Sum of costs of individual operations + cost of writing intermediate results to disk
Pipelining (57 7K {k): pass on tuples to parent operations even as the operation is being executed.

[BIER1EIEANTT, thBERITHEEBLE KRIRIE]

(1) SWKLFERBEEBME R TEI (Ebn external merge-sort & hash-join), B & fEFD A,
(2) A#1E, B join, FEEEIZRBELIEL projection (RETF) .
(3) KA AFmFAI: demand driven(iEKIXF) & producer driven(= 4 Ik 5 9).

About demand driven:

REEEMNTEREIFKT— tuple

About producer driven:

B EFFF AR buffer | child tuples & parent tuples, 1R 2 (8] 2 HMIEFFMIER

A\ Evaluation Plan:

= If an edge in the evaluation tree is labelled
with pipelining, then pipelining can be used.

= For join operations, unless stated explicitly,
ONLY nested loop join can always use

pipelining.
IT ystomer_name (SOTt to remove duplicates)

<1 (hash join)

/

D (merge join) depositor

pipeline/ Npeline

O pranch_city = Brooklyn S patance < 1000
(use index 1) (use linear scan)

branch account

A\ Cost-based Query Optimization:

AHIZEFES H LT seconds vs. days

b6 5 2 BT U BREM S B ML E @ e A e

TE—RMXR, FEIER. EERNANGITHA, HERATEESARKRERL BESTHRAZHER
Ebanan TR ER R EMMNEE, ELBARE (MFAEE, E5HHNTEERNDTMAAREMNH):

H customer _naie

1_‘[customier _naiie

G branch_city=Brooklyn

X
M /
branch \N O branch_city=Brooklyn M

N

account depositor branch account depositor

A\ Equivalence Rules [Z# 38 T]:

= Rule 1: Conjunctive selection operations can be
deconstructed into a sequence of individual

selections.
Og, 0, (E)=0, (0'92 (E))

= Rule 2: Selection operations are commutative.
Oy, (0'92 (E)= Oy, (O-g, (£))
= Rule 3: Only the last one in a sequence of projection
operations is needed, the others can be omitted.
I, (TL,, (... (I, (E))..) =11, (E)
= Rule 4: Selections can be combined with Cartesian
products and theta joins.
= (a). oo(E: X E2) = Ei Mo E2
= (b). ou(E: X2 E2) = E IX{ ot o2 E2

= Rule 5: Theta-join operations (and natural joins) X, [Ruled M,
are commutative. PN N
ExXo E2= Eaixe &
- Rule 6. /pq\ Rule 6a /M\
= (a) Natural join operations are associative: v .S 5 X
(6 1 E) X5 = (£ % 6) N 7
= (b) Theta joins are associative in the following manner: a, Rule 7a v
(61 X o1 E2) Mozno3 E3= E Mornos (&2 KXoz E3) [ir,rlﬂﬁlc[il}rlglﬁu T"/ \EZ
where 0, involves attributes from only & and &;. El E2 El

= Rule 7. The selection operation distributes over
the theta join operation under the following
two conditions:

= (@) When 6 involves only the attributes of one of
the expressions (&) being joined.
Soo(E1 14 0 E2) = (06o(E1)) 6 E2

= (b) When 6, involves only the attributes of £ and 0,
involves only the attributes of &,.

Gp1/\oy (E1x o Ep) = (591(E1)) X o (092 (E2)

= Rule 8. The projection operation distributes

over the theta join operation as follows:
= (a)Let L1 and L2 be attributes from £1 and £2, if 6 involves only

attributes from £, U L;:

n/.pvl.: (EX,E,) = (n/,. (£,))Nﬂ(nz_1 (E,)

= (b) Consider join & &.

=« let L, and L; be sets of attributes from £ and &, respectively.

= let L3 be attributes of & that are involved in join condition 6, but

are not in L; U L, and

= let L4 be attributes of £ that are involved in join condition 6, but

are not in ;v L;.

M0, (B, Mo Ey) =TT, (1,0, (BN, ()

= Rule 9. The set operations union and intersection are
commutative (set difference is not commutative)

b =60EG
G =60k
sRule 10. Set union and intersection are associative.
(GuBuE=Hu(Lub)
(GnE)nE=6n(6ENE)
sRule 11. The selection operation distributes over U, N and -.
a(bV)= a(&) v a(&)
a (b0 &)= a(6) N o(&)
a (b - E)=a(6)- alf)

sRule 12. The projection operation distributes over union

(& v &) = (N(&)) v (M(&))

A Example of Equivalence Rules [Z= 4/t %1 M #9741
Banking example

branch

account

depositor

customer

branch—_name

account_number

branch_city
assets

Sl

branch_name
balance

1

customer—name
account_number

Y

customer—name

customer_street
customer—city

loan

loan—

number

branch_name
amount

A

(1)

= Query: Find the names of all customers who have an
account at some branch located in Brooklyn.
ncusromer_name(Cbranch_cﬁy = ‘Brooklyn"(b" anch X (account X depo-ff tor)))

= Transformation using rule 7a (distribute the selection).
Hcusramzr_namz((Gbranch_ciry ='Brooklyn” (b,' anch)) X (ﬂCCDUﬂ 1 X depos/for'))

Tips: REFUTIERFE I PURD BEREHI KR AR/

(2)

borrower

customer—name
loan_number

= Query: Find the names of all customers with an account at a

Brooklyn branch whose account balance is over $1000.

ncusromer_mme((cbmnch_ciry- ‘Brooklyn” A balance > 1000 (bf' anch D(] (account [)4 d€P05/'70")))

= Transformation using join associatively (Rule 6a and 7a):

ncusromer_mme((cbranch_ary = 'Brooklyn" A balance > 1000 (branch X accoun 1)) X dePDS/ tor)

11 customer_name

S pranciv_city=Brooklyn
A balance <1000

RN

X—

Second form provides an opportunity to apply the “"perform branch o
selections early” (Rule 7b) /
acconnt depositor
G branch_city = "Brooklyn" (branch) IX| S batance » 1000 (account) (a) Initial expression tree

(3)

BIL IR join AR i #a f 25 [B)) B FERY AL AR -

= For all relations r; r; and r3,

(ris) xrs=rix(rzmrs)
(Join Associativity)

= If r,1x 1y is quite large and r; 14 1 is small, we

)
¢
k

may choose

(rivara) xrs
so that we compute and store a smaller
temporary relation.

(4)

ncusromer_name((cbranch_c/ry = "Brooklyn" (b/1 a”Ch) [X| accoun 7‘) X depas itor,)

= When we compute
(Goranch_city = “srockiyne (Dranch) X\ account)

we obtain a relation whose schema is:
(branch_name, branch_city, assets, account_number, balance)

= Push projections using equivalence rules 8b; eliminate
unneeded attributes from intermediate results to get:
”cusromer_name (([Iaccounr__mber((Gbmnch_clty= "Brooklyn" (b"a”(:h) N account)) N dePUS/AfU"))

(5)

= Consider the expression
M ustomer_name ((Sbranch_city = grookiyn (Branch))x(account x| depositor))
= Could compute “account X depositor” first, and join
result with

. Sbranch_city = “Brooklyn" (b" a”€h)
but “account 1« depositor” is likely to be a large

relation.

= Only a small fraction of the customers are likely to
have accounts in branches located in Brooklyn

= it is better to compute first
G branch_city = “Brooklyn” (branch) account

A {#F Query optimizers F AN FE X # 7ML

T customer_name

O branch_city=Brooklyn Opalance < 1000

branch account

(b) Tree after multiple fransformations

procedure genAllEquivalent(E)
EQ={E}
repeat
Match each expression E; in EQ with each equivalence rule R;
if any subexpression ¢; of E; matches one side of R;
Create a new expression E’ which is identical to E;, except that
e; is transformed to match the other side of R;
Add E’ to EQ if it is not already present in EQ
until no new expression can be added to EQ

