Query Evaluation

<Selection>
Here is some definition about the selection operation:

= Notation:)
= pis the selection predicate
= Defined by:
o) ={t| te rand p(t)
in which pis a formula of propositional calculus of

terms connected by: A (and), v (or), — (not)
Each term is of the form:

<attribute> gp [<attribute> or <constant>]
where op can be one of: =, #,>,>. < <
= Selection example:
O branch-nane=Perryricge (ACCOUNT) 4—

A\ Evaluation of Selection Operation [Z A {EEYTEE]:

File scan — search algorithms that scan files and retrieve records that fulfill a selection condition.

CHRE-EREL AEXEFRRBEEEEZEFNICER] (MEINFER)
< linear search>
SERNEIER, T AREEFESK:

» Cost estimate = h,block transfers + 1 seek <

= Average cost = (b,/2) block transfers + 1 seek

< binary search>
NEHFNXHER, T AREEERK:
tT 2 transfer AY[8], tS 2 seek AY[H]

= cost of locating the first tuple by a binary search on the blocks
[oga(b,) * (tr+ ts) <
= If there are multiple records satisfying selection

Add transfer cost of the number of blocks containing records that
satisfy selection condition

Will see how to estimate this cost later

Index scan — search algorithms that use an index.

(RSB ERARSINEREX] (RERSIBER)

< primary index on candidate key >
BRIEXFRERN, FARSIBRHAZERN, UTAREEEFK:

= Retrieve a single record that satisfies the
corresponding equality condition
= Cost= (/7,"" 1) P (fr"' fs) <
where /;denotes the height of the index

B+-tree index is at most |—|°9Fn/21(k)_] (n BB REHNEE)

i.e. for a relation with 1,000,000 (1 million) different search keys, and with 100 index entries per node, hi = 4

calculation progress: Log[500000,100] - Wolfram|Alpha (wolframalpha.com)

= Retrieve multiple records if search-key is
not a candidate key

= each of nmatching records may be ona
different block

= Cost at most is: (h;+ n) *(Fr+ ts)
= Can be very expensive if n is big! Note that it
multiplies the time for seeks by .

A Comparative Selections [ELE 2]
EREFELMAE BTEHFTH, RAFERBERZIGRFAEFTNFERRTUAT .

= Using primary index, comparison

« For oy4. (1) use index to find first tuple > v and scan
relation sequentially from there

= For o ,.,(r) just scan relation sequentially till first tuple > v

= Using the index would be useless, and would require extra seeks on
the index file.

= Using secondary index, comparison

= For o,. (r) use index to find first index entry > vand scan
index sequentially from there, to find pointers to records.

= For c,4.(r) just scan leaf pages of index finding pointers to
records, till first entry > v

A Conjunctive Selections [E 2]
WEFRAZHERS, NEFHEREAESINAELIETHEER

A Disjunctive Selections [4fEZif]
FRAMPABEERS AT (MRELELXGETHNZRS]), MIENFGHERENMNRSIFERERERN
ICRIEHENFE, REMNHFIKEECE.

A Selections With Negation [&EZif]
FRLERESERSIEH

A Duplicate Elimination and Evaluating Projection [JHRE & &% 51 1E{H4]

= Duplicate elimination can be implemented via
hashing or sorting.

= On sorting, duplicates will come adjacent to each
other, duplicates can be deleted.

= Hashing is similar; duplicates will come into the
same buckeft.

= Projection drops columns not in the
selected attribute list.

—REBHEEEKR

A\ External Sort-Merge [SMEBHEFFIAFFE %]
BT #ESEER, NeeE ARAERN merge sort, BREUFE AN 88 L EiER = 88 EN ..

BAMOE BIFHFEIRD ARRNR (BEFRKITERTE), RRHBISIMI—RIEAFHI L ERE
MZFER.

BEERAEZEH):

23/ 794 3 %¢

herde sort =7 m@m
N 67°’ [4v8

>3

memory Size = 3

Reference: CPT201 SMRHEREIAFFE L (external sort-merge) 5 merge join - £01°F (zhihu.com)

Continue-Cost Analysis:

= Assume relation in 5. blocks, M memory size, number of run file [5/M 1.

= Buffer size b,(read b, blocks at a time from each run and b, blocks for
writing; before we assumed b,=1).

= Cost of|Block Transfer

= Each time can merge [(M-b,)/by;

= S0 total number of merge passes\required: [log e [6,/M T1.
= Block transfers for initial run creation as well as in each pass is 26, (read/write all b,

blocks).
= Thus total number of block transfers for external sorting (For final pass, we don't count
write cost):
2b, + Zbr“oglM/bb/-I [6/MT]- b,=|b, (Zﬂogw/bbﬂ [6/MT]+1)
= Cost of seeks

During run generation: one seek to read each run and one seek to write each run 2[b,/ M]
During the merge phase: need 2[b,/ by seeks for each merge pass
Total number of seeks:

2[b,/ M+ 21 b./b,][106 .l b/MT-15b./ b, =
20 b,/ M1 +[b,/ b,] (2[og ..l b/MT1 -1)

<Join>

A Natural-Join Operation [H &]

Notation: r Xs
= Let rand sbe relations on schemas R and Srespectively.

Then, r s is arelation on schema R U S obtained as follows: = Example:
= Consider each pair of tuples #,from rand t¢from s. R=(A,8CD)
= If t.and #5have the same value on each of the attributes in RN S, add a 5= (£ 8,D)
tuple # to the result, where = Result schema= (A4, B8, € D, E)
« thas the same value as #on r = r I sis defined as:

= thas the same value as #gon s Mra, rg rcro, se(©r=s8nrp=sp(r x 5))

Banking example:

branch account depositor customer

branch—name {—1_4 account_number <—L customer—_name customer—name
branch_city branch_name account_mnumber customer_streef

assets Dbalance

customer—city

loan borrower

loan_number <—I— customer—name

branch_name loan_number
amouint

Number of records of customer. 10,000
Number of blocks of customer. 400
Number of records of depositor. 5,000
Number of blocks of depositor: 100

A\ Nested-Loop Join [BEEIREIE]

Can be used independently of everything (like the linear search for selection)

for each tuple #.in do begin
for each tuple 7, in 5 do begin
test pair (1,1, to see if they satisfy the join condition 6
if they do, add . - . 1o the result.
end
end

(r is called the outer relation and s the inner relation of the join)
EHL, EHEFERK, cost

= In the worst case, if there is enough memory only to
hold one block of each relation, 7, is the number of

tuples in relation 7, the estimated cost is: = Assuming worst case memory availability cost
= n.* bg+ b, block transfers, plus estimate is
= N.+ b.seeks = with depositor as outer relation:

= 5,000 * 400 + 100 = 2,000,100 block transfers,
« 5,000 + 100 = 5,100 seeks
= with customer as the outer relation
« 10,000 * 100 + 400 = 1,000,400 block transfers and 10,400

= If the smaller relation fits entirely in memory, use
that as the inner relation.
= Reduces cost to b, + b.block transfers and 2 seeks

= But in general, it is much better to have the smaller seeks
relation as the outer relation = If smaller relation (depositor) fits entirely in
= The choice of the inner and outer relation strongly memory, the cost estimate will be 500 block
depends on the estimate of the size of each relation. transfers and 2 seeks

A\ Block Nested-Loop Join [ETEIMEE]

for each block B.of rdo begin
for each block B,0f sdo begin
for each tuple 7.in B do begin
for each tuple 7.in B. do begin
Check if (t,1.)satisfy the join condition
if they do, add #.* 7. to the result.
end
end
end
end

BIERXEREAER, oM RERX FRRHR, BOBEEHERE, cost

= Worst case estimate: b, * b, + b, block transfers
and 2 * b, seeks
= Each block in the inner relation s'is read once for each
block in the outer relation (instead of once for each
tuple in the outer relation).
= Best case (when smaller relation fits into memory):
b. + b, block transfers plus 2 seeks.

A\ Indexed Nested-Loop Join [3| HEJEREHE]
HRRS| T DL R XA, cost:

= Worst case: buffer has space for only one page of r, and,
for each tuple in r, we perform an index lookup on s.

s Cost of the join: b, + n.* ¢ block transfers and seeks <

= Where cis the cost of traversing index and fetching all matching s
tuples for one tuple in r

= ccan be estimated as cost of a single selection on susing the join
condition (usually quite low, when compared to the join)

= If indices are available on join attributes of both rand s,

i.e. 1% & customer B 1000tuples, & hi=4, AREZBEFHH#HIT— KA1 F REH B SSPRETE_(4+1)

» Cost of indexed nested loops join
= 100 + 5,000 * (4+1) = 25,100 block transfers and seeks.
= The number of block transfers is less than that for block nested loops join
= But number of seeks is much larger

= In this case using the index doesn't pay (this is specially so because the
relations are small)

A Merge-Join [&FFiE1E]

al a2 al a3
;
.73 EaTa
2o T 2 ’ b1 b |G
1. Initialise two pointers point fo rand s e Sl
2. While not done FRER FREN
i the pointers to r and s move through the relation.
.) i f m|B
= A group of tuples of inner relation s with the same value on the
join attributes is read into S, . al s
. Do join on tuple pointed by p. and tuples in S q

3. End while r
RERTEMEEMBRER
= Thus the cost of merge join is (where by is the number

of blocks allocated in memory for each relation):
b, + b; block transfers +

[b,/ byl +[b,/ by| seeks «
= Plus the cost of sorting if relations are unsorted.

= Since seeks are much more expensive than data transfer, it
makes sense to allocate multiple buffer blocks to each relation,
provided extra memory is available.

A\ Hash-Join [f& &%)
AREEBATEMEENBRER
BB FARHREEEETEREARHXESX, EREMRFHENRERE T EHEERE

sl -
1

f ; |
3
4

llllll

Juy
IRlmialat

4

parti?ons partitions
of r of s

£FHR n M

= The number of partitions n for the hash

function A is chosen such that each s;

should fit in memory.

= Typically n is chosen as [b.,/M1* f where f
is a “fudge factor”, typically around 1.2, to
avoid overflows

= The probe relation partitions r; need not fit
in memory

Cost & example:

= For the running example, assume that memory size is 20
blocks b= 100 and b, 51, = 400.

= depositoris to be used as build input. Partition it info five

f partitions, each of size 20 blocks. This partitioning can be
= The cost of hash join is done in one pass. Similarly, partition customer into five

3(b.+ by)+ 4 * n, block transfers, and partitions, each of size 80. This is also done in one pass.
2(1b./ byl +[b,/ byl) + 2 = n, seeks = Assuming 3 blocks are allocated for the input buffer and
= each of the n, partitions could have a partially filled block each output buffer

that has to be written and read back = Therefore total cost, ignoring cost of writing partially filled
= The build and probe phases require only one seek for each of blocks:

the ny, partitions of each relation, since each partition can be 3(100 + 400) = 1, 500 block transfers +

read sequentially, 2(1100/31+400/31) + 25 = 346 seeks

= If the entire build input can be kept in main = We had up to here:
memory (then no partitioning is required), Cost « 40,100 block transfers plus 200 seeks (for block nested loop)
estimate goes down to b, + b, and 2 seeks. = 25,100 block transfers and seeks (for index nested loop).

Other Operations: Aggregation

= Aggregation can be implemented similarly to
duplicate elimination.

= Sorting or hashing can be used to bring tuples in the
same group together, and then the aggregate functions
can be applied on each group.

= Optimisation: combine tuples in the same group during
run generation and intermediate merges, by computing
partial aggregate values

= For count, min, max, sum: keep aggregate values on tuples found
so far in the group.

When combining partial aggregate for count, add up the aggregates

= For avg, keep sum and count, and divide sum by count at the end

BREEEL sum/avg/count/min/max
BREMLIMEEREREM, TUERHEFEHFEE— AN TENE—&, RAEESMMEINARE
gﬂﬁo

Other Operations: Set Operations

= Seft operations (U, N and -): can either use variant of merge-join after
sorting, or variant of hash-join.
= Set operations using hashing:
1 Partition both relations using the same hash function
2. Process each partition /as follows.
1 Using a different hashing function, build an in-memory hash
indeX on r;.
2 Processs; as follows
rus
Add tuples in s;to the hash index if they are not in it.
At the end, add the tuples in the hash index to the
result.
ros

oufﬁu} tuples in s, to the result if they are already in the
hash index
F-5
for each tuple in s, if it is in the hash index, delete it
from the index.
At the end, add remaining tuples in the hash index to
the result.

FREHRRBBERDIRRATOX, REAFDOZRSDPHEHATERE (U -)

