Hash Indexing

Hash-based Indexing:

Static Hashing [BE7SISF]:

A bucket is a unit of storage containing one or more records (a bucket is typically a disk block).
BEEE—EHEZHFICEKMNEFHERETIRRE 2 — M HED)

Hash function h is a function from the set of all search-key values K to the set of all bucket addresses B, Hash
function h is a function from the set of all search-key values K to the set of all bucket addresses B.
MERmEE h B— M ERRRE K NESZIFEETL B NESHERE, BRREh Z2—IMREHE
REEKNEST AR B WEENRE]

Records with different search-key values may be mapped to the same bucket; thus, entire bucket has to be
searched sequentially to locate a record.

[RERERZREMNCE T MRS ZIE— M Bit, DIAORERENMEREN—FITR]

Good or bad case:

Worst hash function maps all search-key values to the same bucket, an ideal hash function is uniform and
random.

i.e. If we have N buckets, numbered 0 to N-1, a hash function h of the following form works well in practice:

h(value) = (a*value + b) mod N

Example of Hash File bucket 0 bucket 4
k i 12121| Wu Finance 90000
Organisation 76543| Singh | Finance_[50000
= Hash file organisation of /nstructor file, using
. bucket 1 bucket 5
dept_name as Key; assume there are 8 N ST R
buckets
= The binary representation of the /th
character is assumed to be the integer I bucket 2 bucket 6
32343| El Said History 80000 10101 [Srinivasan |Comp. Sci.|65000)|
alefclolelrlalalr [o[w v [m[w]o]p[a]w]s v ulv w[x]v]z] [58583|Califieri | History 60000 45565|Katz__|Comp. Sci[75000
[3N ENN N N A N K N K 3 K K K2 D D B B B E A A BT 83821 [Brandt _|Comp. 5¢i/92000
= The hash function returns the sum of the bucket 3 bucket 7
H H 22222| Einstein | Physics |95000
binary representations of the characters e M lew
modulo 8 98345| Kim Elec. Eng.[80000
= e.g. h(Music) = 1; h(History) = 2; h(Physics) = 3; h(Elec. Eng.) = 3

i.e. key(music) = mod ((13+21+19+9+3),8) = 1

There comes a question: bucket overflow can occur because of insufficient [~,&] buckets or skew [{i#}] in
distribution of records (multiple records have same search-key value, chosen hash function produces non-
uniform distribution of key values).

The overflow can be reduced but can't be eliminated. usually, it's handled by using overflow buckets
(Overflow chaining — the overflow buckets of a given bucket are chained together in a linked list).

bucket 0

bucket 1 — f—r

overflow buckets for bucket 1

bucket 2

bucket 3

For index-structure creation, hash indices are always secondary indices®

The disadvantage of static hashing:

(1) if initial number of buckets is too small, with the file grows, there will happens a lot of overflow events.
(2) if initial number of buckets is too big, in normal case, it will wasted so many space.

(3) if we periodic re-organization of the file with a new hash function, it's too expensive and unstable.
Sooo:+here’s dynamic hashing coming! @

Dynamic Hashing [EI7SIE %]:
Allows the hash function to be modified dynamically.
[VFENZSE 2IE 7 R 3K

Extendable hashing — one form of dynamic hashing:
At any time use only a prefix of the hash function to index into a table of bucket addresses.

[AEEARR, RERRHRBORIRR S| 2 iR $]

Let the length of the prefix be i bits, bucket address table size = 2Ai (initially i = 0), value of i grows and

shrinks as the size of the database grows and shrinks.
(RETBKER i Az, WAIERA/NET 2 1 R77@0%E 1 5T 0), | NEBELSIEEN/NNIBKKSET
R4

Multiple entries in the bucket address table may point to the same bucket (n:1), thus, actual number of

buckets is < 2Ai (the number of buckets also changes dynamically due to coalescing and splitting of buckets).

[F P a9 % & 51 R sEIEmBE— (1), FLLSKERBEUNT 2 i(E it = B E F 5 Rz

SE)]

Example of Binary Representation:

l= ls= 1
10 = 240 = 2
11 = 241 = 3
100 = 44040 = 4
101 = 440+1 = S
110 = 44240 = 6
111 = 442+1 = 7
1000 = SHIH040 = (]
1001 = S+H0+0+1 = 9
1010 = S+04240 = 10
1011 = S+0+2+1 = 11
1100 = SH4+040 = 12
1101 = S+440+1 = 13
1110 = SH44240 = 14
1111 = S+442+41 = 15
10000 = 1640404040 = 16
10001 = 1640404041 = 17
10010 = 1640404240 = 15
10011 = 164+0+04241 = 19
10100 = 1640444040 = 20
10101 = 164+04440+1 = 21
10110 = 1640444240 = 22
10111 = 1640444241 = 23
11000 = 1645404040 = 24
11001 = 1645404041 = 25
11010 = 16453404240 = 26
11011 = 1645404241 = 27
11100 = 1645444040 = 28
11101 = 1645444041 = 29
11110 = 1645444240 = 30
11111 = 1645444241 = 31 R:i=3 B: i=5

General Extendable Hash Structure:

Let the length of the prefix be i bits (write it on the top of the bucket-address-table)

Each bucket j stores a value i j (write it on the top of the bucket)

All the entries in the bucket-address-table that point to the same bucket have the same hash values on the
first ij bits. The number of bucket-address-table entries that point to bucket j is: 2/ (i-ij)

ie.

hash prefix
5] (]

f
00.. /
01.. 1
10 . bucket 1
L, R iy
11.. \ B
bucket 2
bucket address table bucket 3

In this structure /=2, /, = 5= /, whereas 4 = /-1

A Queries:

To locate the bucket containing search-key Kj:

(1) Compute h(Kj) = X

(2) Use the first i high order bits of X as a displacement into bucket address table, and follow the pointer to

appropriate bucket

A Insertion:

To insert a record with search-key value Kj:

follow same procedure as look-up and locate the bucket, say j (E£L)
have empty room in bucket j:

[1] insert record in the bucket

i > ij (more than one pointer to bucket j):

[1] allocate a new bucket z and set ij = iz = (ij + 1)

[2] Update the second half of the bucket address table entries originally pointing to j change to point to z

[3] remove each record in bucket j and re-insert (possibly in j or z)

[4] re-compute new bucket for kj and insert record in the bucket (further splitting is required if the bucket is still full)

i reaches some limit or too many splits have happened in this insertion:

[1] create an overflow bucket
[1] increment i and double the size of the bucket address table
2
(3
4

replace each entry in the table by two entries that point to the same bucket

re-compute new bucket address table entry for kj

i R e el

now i > ij so use the first case above

A Deletion:
To delete a key value:
locate it in its bucket and remove it (L)

If after deletion the bucket becomes empty:
[1] remove it (with appropriate updates to the bucket address table)

else:
[1] coalescing[& Ff] buckets (can coalesce only with a “buddy” bucket having same value of ij or same ij —1 prefix)
[2] when it is necessary, decreasing bucket address table size is also possible

(it's very expensive and only if buckets become much smaller than the size of the table)

Example of insertion: insertion of 13
(Step 1) (Step 2)

. 2o .= The intermediate hash index is shown below after
= Consider the extendable hashing with hash function 4/ Wi a0 ciso of the biicket addpess table
h(x) = x mod 8 and a bucket can hold three records. 9 i '
Draw the hash index after inserting 13. Initial hash ® Search key 13 should be inserted fo Bucket 2.

index shown below.

[1]
1 —I] 2 /’ 9
i
0 il Bucketl :)Kl) / Bucketl
: 10
11
1 \‘ 1
4
; Bucket2 5 Bucket2
7 7
(Step 3) (Step 4)
= Increment i;for Bucket 2 and 3. = Re-insert search key 13.
= Reinsert search keys 4,5 and 7.
2 Tl 2 —l]
9 9
00 7 Bucketl 00 % Bucketl
01 01
10 10
a \ZI— it \Z—
4 4
5 Bucket2 5 Bucket2
13
[2] [2]
7 7
Bucket3 Bucket3

Extendable Hashing vs. Other Schemes

Advantage®©):

Hash performance does not degrade with growth of file (minimal space overhead)
[(RRBEE XHHE L 1 RE T B

Disadvantage®):

Extra level of indirection to find desired record

[(FEZNM—RITEEHLEEHE]

Bucket address table may itself become very big (larger than memory), can't allocate very large contiguous
areas on disk either, solution: B+-tree structure to locate desired record in bucket address table
(Bt RTESTRAK, BTARAEUE FHERA—RESEXE, MATREFH B+RES]
Changing size of bucket address table is an expensive operation

[Bt iR AR/ N —TUTSHTR RRYIR{E]

Comparison of Ordered Indexing and Hashing:

The choice depends on:
[1]Cost of periodic re-organisation
[2]Relative frequency of insertions and deletions
[3]ls it desirable to optimise average access time at the expense of worst-case access time?
[4]Expected type of queries
i.e. Hash-indices are extensively used in-memory but not used much on disk.
"select A1, A2, ... An from r where Ai = ¢":
choose hashing indices
"select Al, A2, ... An from r where Ai >=c2 and Ai <=cl1":

choose ordered indices

Lecture 2b is about advance indices which is not required to test:

