<Indexing Techniques>

Indexing mechanisms can speed up access to the desired data.

(RS TT AR XS B 75 BB A 175 5]

Index on “SID”’

Athens S 0 London 10

London / Paris > 20

London Paris - 20

Paris London 30
gpParis S5 Adams 30 Athens | |30
%Index on “Address” Index on “Age”

The Structure of Index:
Search Key: one or set of attributes used to look up records in a file.
Data file: collection of blocks holding records on disk

Index file: an data structure allowing the DBMS to find particular records in a data file more efficiently.

An index file consists of records (called index entries) of the form: | == l e |

Index files are typically much smaller than the original file.
Relationship: a search key K in the index file is associated with a pointer to a data-file record that has search key
K.

Index Evaluation Metrics [1E{fr#84R]:
Access types supported efficiently \ Access time \ Insertion time \ Deletion time \ Space overhead

Multiple Index:
Ordered index where index entries are sorted on the search key value:
Dense index: index record appears for every search-key value in the file.

10101 10101 [Srinivasan | Comp. Sci. | 65000 -7
12121 12121 |[Wu Finance 90000 4
15151 15151 |Mozart Music 40000 —;
22222 22222 |Einstein Physics 95000 4
32343 32343 |El Said History 60000 -7
33456 33456 |Gold Physics 87000 ~7
45565 45565 |Katz Comp. Sci. | 75000 _7
58583 58583 | Califieri History 62000 _7
76543 76543 |Singh Finance 80000 -?
76766 76766 | Crick Biology 72000 -7
83821 83821 |Brandt Comp. Sci. | 92000 -7
98345 98345 |Kim Elec. Eng. | 80000 _7
€1
Sparse Index: contains index records for only some search-key values.
10101 10101 |Srinivasan| Comp. Sci.| 65000 1

32343 12121 |[Wu Finance 90000
76766 15151 |Mozart | Music 40000 |
22222 |Einstein | Physics 95000

32343 |El Said History 60000

33456 |Gold Physics 87000 B
45565 |Katz Comp. Sci.| 75000 -
58583 |Califieri | History 62000 a
76543 |Singh Finance 80000 4

76766 | Crick Biology 72000
83821 |[Brandt Comp. Sci. | 92000
98345 |Kim Elec. Eng. | 80000

|

J AVAVAVAVAVAVAVAVAVAVAY)




Two ways to sort the index:

Primary index [5£8£%& 5|]: an index whose search key specifies the sequential order of the file.  (Can be sparse)
Secondary index [IEEEEEZE 5(]: an index whose search key specifies an order different from the sequential order
of the file. (Can’t be sparse)

=

40000 10101 | Srinivasan | Comp. Sci. | 65000 _7
60000 12121 |Wu Finance 90000 —:>
62000 15151 |Mozart | Music 40000 | —
65000 | 7 22222 |Einstein | Physics 95000 |
Zg()l)l) . 32343 | El Said History 60000 _>
B0 3345 | Gold Physics | 87000 _::;
87000 45565 | Katz Comp. Sci. | 75000 =5
90000 58583 | Califieri History 62000 =
92000 76543 |Singh Finance 80000 =t
95000 76766 | Crick Biology 72000 ._?

- 83821 |Brandt Comp. Sci. | 92000 Ag

98345 | Kim Elec. Eng. | 80000

= Tips: have to be dense
RN TRENHEYHRA, BEBMIRIBNFHE B8 XFEEFEHRSIXE,
SRRSINMFEEAEN, BEEHRSIBSBARM (R RIFAR R4 TTESN— TR ETER)
So there comes the multilevel index:
Solution: treat primary index kept on disk as a sequential file and construct a sparse index on it.

outer index — a sparse index of primary index

inner index — the primary index file

3— .
[“index | |1 data

| block 0 block 0
¢ ! -

data ¥
block 1

outer index inner index

(B ERSBRSIEZNFEEXS BRBRRSIEERFHRS)

Hashing index where hashing technique is employed to organize index entries:

Index Definition in SQL:
Create an index:
create index <index-name> on <relation-name> (<attribute-list>)
create index b-index on branch(branch_name)
To drop an index :

drop index <index-name>

<B+ Tree Indexing>

HTRSIINFXHEEXHREEZTEEREIE. BOURM, SN B+ Tree R5|EM, ©XTEMBAFE
BN TEN, RIS EFHESEA. (advantage>disadvantage) (“short” and “fat”)

[a [ &[]~ [Pa[Ka] P

Typical B+ Tree node:



Some feature of B+ Tree:
® n (or sometimes N) is the number of pointers in a node (pointers: P1, P2, --Pn)
Search keys: K1 < K2 < K3 <...<Kn-1
All paths (from root to leaf) have same length
Root must have at least two children

In each non-leaf node (inner node), more than ‘half’ : n/2(round up) pointers must be used

Each leaf node must contain at least (n-1)/2(round up) keys

Sp: If the root is not a leaf, it has at least 2 children

Sp: If the root is a leaf (that is, there are no other nodes in the tree), it can have between 0 and (n-1)

values

If there are K search-key values in the file, The B*-
tree height is no more than|log /1K) 1.

= Level below root has at least 2 values
» Next level has at least 2* [ n/2 | values

« Next next level has at least 2* [ n/21* [n/2] values
o = .. efc.

= An Example B+-Tree withn =3
= All paths have same length.
= Root has (at least) two children

= In each non-leaf node (inter node), more than half
(2[3/21=2) pointers are used

= Each leaf node contains at least [ (3-1)/2)]=1 key

Lsllzli—tl e [[o]F{=]] [F—l=]ls]

= Another B*-tree example with n= 6

= Leaf nodes must have between 3 and 5 search key
values , ((#~1)/21and n-1, with n= 6).

= Non-leaf nodes other than root must have between
3 and 6 children/pointers ((n/21]and nwith n=6).

= Root must have at least 2 children.

N 2 M O | I

[ [Brandt[ ICaliﬁcril lCrick[ IEinstt‘inI [ H——>| lEl Saidl [ Gold I I Katz ” Kim ] I H—>I [ Mozartl I Singhl l Srinivasan[ IWu[ I I I




Queries on B+-Trees [Zif]:

= Find record with search-key value V.
= 1. C=root
= 2. While C is not a leaf node
« 2.1. Let i be least value such that V= K;.

« 2.2. If no such i exists, set C = last non-null
pointer in C

- 23.Else { if (V= K;) Set C = Py ; else set C = P}
= 3. Let i be least value such that K;= V

= 4 If there is such a value i, follow pointer P; to
the desired record.

= B. Else no record with search-key value V exists.

Searching is very efficiently: a node is generally the same size as a disk block, typically 4 kilobytes. And n is
typically around 100 (40 bytes per index entry), with 1 million search key values and n = 100. So at most
log50(1,000,000) = 4 nodes are accessed in a lookup.

Updates on B+-Trees: Insertion [#EA]

= 1. Find the leaf node in which the search-key value
would appear
= 2. If the search-key value is already present in the
leaf node
= 2.1. Add record to the file
= 2.2. If necessary add a pointer to the bucket.
= 3. If the search-key value is not present, then
= 3.1. add the record to the main file (and create a bucket if
necessary)
= 3.2. If there is room in the leaf node, insert (key-value,
pointer) pair in the leaf node
= 3.3. Otherwise, split the node (along with the new (key-value,
pointer) entry) as discussed in the next slides.

Splitting a Leaf Node Splitting a Non-leaf Node

T < - G |

ﬁml ______
~ e
K o211 el [ [ ]

Diagrammatize [Ef#]:

Root node
[Brinivasan[[ T[] ' Internal nodes
Leaf nodes-
[’[Bn\ndllek}liﬁcﬁ] [Cﬁck]#—[:]ﬁnscem]#]ms.:id[[ H’[.[ Gold ]‘] Katz [,[ KimH—[JMuzan[}[ Singh [ ] H»msﬁni\'as-mLIWu” 1]
ams| [Brandt[ [ [}>{ [Catifieri] [Crick] [ [3>[ [Einstein] [E1 Said[ [ [J+{ [Gold] [Katz] [Kim[{ [Mozart] [Singh] [ [ [Srinivasan] Jwu[ ] T]

B+*-Tree before and after insertion of “Adams”




Updates on B+-Trees: Deletion [#B&]

= Find the record to be deleted, and remove it from the main file
and from the bucket (if present).

= Remove (search-key value, pointer) from the leaf node if there is
no bucket or if the bucket has become empty.

= If the node has too few entries due to the removal, and the
entries in the node and a sibling fit into a single node, then
merge siblings.

= Otherwise, if the node has too few entries due to the removal,
but the entries in the node and a sibling do not fit into a single
node, then redistribute pointers.

= The node deletions may cascade upwards till a node which has
[n/2] or more pointers is found.

= If the root node has only one pointer after deletion, it is deleted
and the sole child becomes the root.

EREETHE, MFHSMEMHFHRBNRASEHTE. BT B+HAXBFEEEN F OB AEH A
FEMFHRHFHAEFEEER data).
Diagrammatize [Ef#]:

[IMozarn [ T Tl

[[Catifier] [Einstein] [Gold] ] [Iseinivasan[ [ T T]

[[adams] [Brandt] [ [} [Catifieri] [Crick] | [3[ [Einstein[ [E1 Said[ | [[ [Gold] [Katz] [Kim[}>] [Mozart] [Singh[ | [J>{ [srinivasan] [Wu[] T]

Before and after deleting “Srinivasan”

[[Catiier] [Einstein] T T] [[Mozan[[ T[]

{ [Adams] [Branat[ | [}+] [Catiber] [crick] [ [}| [Einstein] [Ersaid] | [3~| [Gota] [Kate ] [<im[$~] [Mozart] [Singh] [Wu]|
=

E

Q = Deleting “Srinivasan” causes merging.of under-full leaves

S s E

| IAdamsl IBrandtl | H->I lCaliﬁeril ICrickl | I+>I IEinsteinl IEI Saidl l H-'I IGoldI IKa!zl |KimH—>| IMuzarlI |Singhl IWul |
Before and after deleting “Singh and Wu”

[{Ge] [ TT]

Zhlavis x4

[TAdams[[Branat] [ [+ [catifieri] [Crick] [ [J>[ [Einstein[ [E1Said[ [ [+ [Gold[ [Katz[[  [}{ [Kim [[Mozarn| [ []




[ ] catifieri] [Einstein] |

[Tadams[[Brandt[[ [}{[catifieri] [crick[ [ [4[ [Einstein] [Ersaid [ [}{ [Gotd] [Katz][ T [ [im [ [Mozarn|[ ]

Before and after deleting “Gold”

| i | Califieri I || E'msteinHGoldlll

| |Adams| |Brandt| | H—>| |Caliﬁeri[ |Crick| | H——l |Einstein| |E1 Saidl l H—-l |Katz| |Kim| |Mozart[ |

4E4 tutorial FX B+ R IRIEME:

B, n MESINAN, AFEHNETHEE n A OBERENES) FEAZAE -1 UTEREXN
B, M. K. EEAXEHZETFround upl(n/2)dtFTE ALK
XFHI R

—MRBREHREMBAREEMNEIM TR, ZEEFENTHHTEANEL n BENBHTHESER?. £
sTEBH[round up](n/2)ME n-1 4,

XFIEH A

WFIHFHRARE—REBEEZMB ELEETHRNEN, TBEARISRDOIIGINEN T SR AEE, 5%
BRARFEREFTEEHEA " RIBIEXEFN—ITRIFEFE H D MRS EERNENHIEETT
RO URER, ELEGMRNEFFSER.




