
Big Data Storage
 Introduction to Big Data

Big data is a broad term for data sets and it can be described by the following main 3Vs and other 2Vs

characteristics:

Volume [容积] (huge large amount of data: terabytes, petabytes, exabytes) [数据集的大容量]

Velocity [速率] (speed of data in and out: real-time, streaming) [数据出入的速度]

Variety [多样性] (range of data types and sources, non-relational data such as nested relation, documents,

XML data, web data, graph, multimedia, flexible schema or no schema) [数据类型和来源的范围]

Two more Vs

Veracity [准确] (correctness and accuracy of information: data quality and reliability) [信息的正确性]

Value [价值] (use machine learning, data mining, statistics, visualization, decision analysis techniques to

extract/mine/derive previously unknown insights from data and become actionable knowledge, business

value) [有用作分析的价值]

Database Models:

File system

Hierarchical Model (IMS)

Network Model (IDMS)

Relational Model

Nested Relational Model

Entity-Relationship Approach

Object-Oriented (OO) Data Model

Deductive and Object-Oriented (DOOD)

Object Relational Data Model

Semi-structured Data Model (XML)

RDF and Linked Data

…

 Issues and performance problems in RDBMS

•传统的关系型数据库(RDBMS)使用 SQL，不适合处理大量的数据

•关系模型中的正常形式是去除冗余并减少更新异常, 但在物理数据库设计中添加冗余不会引起更新异常，

相反可能会显著提高性能避免 join， join 操作是非常消耗算力的，故关系型模型可能不适合一些程序

 NoSQL and categories

NoSQL (not-only SQL)

Flexible schema or no schema, avoidance of unneeded complexity which are designed to store data

structures that are either simple or more similar to the ones of object-oriented programming languages

compared to relational data structures. NoSQL softens the ACID properties in relational databases to allow

horizontal scalability ().

Benefits: massive scalability & high throughput & higher performance & availability & quicker/cheaper to

set up …

▲Consistency

Strong consistency: after the update completes, any subsequent access will return the updated value.

Weak consistency: a number of conditions need to be met before the updated value will be returned.

Eventual consistency: a consistency model used in distributed computing to achieve high availability that

informally guarantees that, if no new updates are made to a given data item, eventually all accesses to that

item will return the last updated value.

▲4 major categories for NoSQL databases:

•Key-value Stores

•Key-value storage systems store large numbers (billions or even more) of small (KB-MB) sized records

•Records are partitioned across multiple machines

•Queries are routed by the system to appropriate machines

•Records are also replicated across multiple machines, to ensure availability even if a machine fails

(Key-value stores ensure that updates are applied to all replicas, to ensure that their values are consistent)

•A key-value store is like associate array:

data is represented in the form of array[“key”] = value or hash table in main memory.

•Each data/object is stored, indexed, and accessed using a key value to access the hash table or array.

•Value is a single opaque collection of objects or data items

can be structured, semi-structured, or unstructured. It is just an un-interpreted string of bytes of

arbitrary length.

•The meaning of the value in a key-value pair has to be interpreted by programmers.

•No concept of “foreign key”, no join

data can be horizontally partitioned and distributed

Key-value stores may store:

Un-interpreted bytes, with an associated key [带有关联键的未解释字节]

E.g., Amazon S3, Amazon Dynamo

Wide-table (can have arbitrarily many attribute names) with associated key [带有关联键的宽表]

Google BigTable, Apache Cassandra, Apache Hbase, Amazon DynamoDB

Allows some operations (e.g., filtering) to execute on storage node

JSON [JavaScript 对象表示法] (lecture courseware 11a P19 example)

MongoDB, CouchDB (document model)

Typical operations include (but no modification):

INSERT new Key-Value pairs (or put)

LOOKUP value for a specified key (or get)

DELETE key and the value associated with it

Some systems also support range queries on key values

Key value stores are not full database systems

•Have no/limited support for transactional updates

•Applications must manage query processing on their own

Not supporting above features makes it easier to build scalable data storage systems, also called NoSQL

systems

•Wide-Column Stores

•Data is stored as tables. A table has a row-key and a pre-defined set of column-family columns.

•Each row in the table is uniquely identified by a row-key value.

•Each column family has a large & flexible number of columns (i.e. the No of columns may change from row

to row) and each column has a name together with one or more values.

•A column-oriented DBMS stores data tables as column families of data rather than as rows of data (better

for data compression).

•A keyspace in a wide-column store contains all the column families (like tables in the relational model),

which contain rows, which contain columns (reference: What is a Column Store Database?):

•A column family containing 3 rows. Each row contains its own set of columns:

单行分区表(reference: The Main NoSQL Database Types | Studio 3T)

https://database.guide/what-is-a-column-store-database/
https://studio3t.com/knowledge-base/articles/nosql-database-types/#wide-column-store

•BigTable: Storing Web Pages

A sparse, distributed, persistent multi-dimensional sorted map.

Used by several Google applications such as web indexing, MapReduce, Google Maps, Google Earth,

YouTube, Gmail, etc.

The map is indexed by a row key, column key, and a timestamp; each value in the map is an uninterpreted

array of bytes.

For webpage, the row-key value is a reversed url.

BigTable maintains data in lexicographic order by row key.

So webpages in the same domain are grouped together into contiguous rows.

Reference: BigTable (rutgers.edu)

•Document Stores

Schema languages are not powerful to express Object- Relationship-Attribute semantics in ER model.

Data is stored in so-called documents. (Arbitrary data in some (semi-)structured format: JSON, BSON, XML)

Data format is typically fixed, but the structure is flexible. (In a JSON-based document store, documents with

completely different sets of attributes can be stored together)

•Graph Database

Best suited for representing data with a large number of interconnections

•especially when information about those interconnections is at least as important as the represented

data

•for example, social relations or geographic data.

Graph databases allow for queries on the graph structure, e.g., relations between nodes or shortest paths.

Examples:

RDF(Resource Description Framework) graph and linked data & Google knowledge graph

 SQL vs NoSQL

Characteristics SQL NoSQL

Schema Yes. Schema must be predefined and

fixed. Schema evolution is difficult.

Schema is optional, may not be

predefined. Schema can be semi

structured or unstructured

Data type Flat relations. Fixed length

field/record for each relation

defined.

Tree/graph structured data. Variable

length, multi-valued attribute

(repeating, nested tree), can add new

tag names any time.

Data persistence Databases are stored on disk drive,

data persistence. Very slow to access

as compared to in-memory stores.

In-memory, use pointer and hashing.

Very fast to access. Need to convert

data in memory from/to disk drive to

archive data persistence.

https://people.cs.rutgers.edu/~pxk/417/notes/content/bigtable.html

OLTP or OLAP OLTP, mission critical online

transaction applications. Only keep

current database state. If historical

data is required then need to use

temporal database with time period

to store.

OLAP for data warehouse and data

analytics. Keep the historical data,

time/date dimension is a must for

meaningful data analysis. (Seldom

mention time attribute in key-value

store and data graph.)

Language to access the

data

Standard DBMS declarative query

language SQL. Operate on a set of

tuples at a time basis.

Different imperative programming

languages. Write programs (e.g.

MapReduce, JSON programs with API’

s).

Update to data Frequent update to database

(transaction)

mainly have new data, no or seldom

updates (deletion and addition)

Query optimization Query optimizer of RDBMS Optimization done by programmers

for each of their programs.

DBMS RDBMS Not really, just as data stores

Answers for queries Return accurate/precise query

answers

Return “best guess” or “an opinion”

answers – similar to data mining and

IR answers

ACID Yes, consistency is the most

important issue for OLTP

applications

Emphasis on speed performance, use

eventual consistent. If no updates,

then ACID is not required.

Join operation Yes, queries may involve many joins,

can be very slow.

Avoid or no join. Use redundant data

to speed up processing

Ad hoc user queries Write SQL programs or RDB

keyword query search

Need programmers to write

programs.

Distributed & parallel

processing

Limited Yes. Data can be partitioned

horizontally and/or vertically and

distributed to nodes, and process the

partitioned data in parallel. Efficient

for such applications.

 Big data storage

▲Big Data Storage Systems:

•Distributed file systems

•Shading across multiple databases

•Key-value storage systems (all the NoSQL storage systems as key-value stores)

•Parallel and distributed databases

 MapReduce [分布式计算系统]

MapReduce 详解_burpee 的博客-CSDN 博客_mapreduce

▲Distributed File Systems:

•A distributed file system stores data across a large collection of machines, but provides single file system

view

•Highly scalable distributed file system for large data-intensive applications. (e.g. 10K nodes, 100 million files,

10 PB)

https://blog.csdn.net/burpee/article/details/78769161

•Provides redundant storage of massive amount of data on cheap and unreliable computers

(1) Files are replicated to handle hardware failure

(2) Detect failures and recovers from them

Examples:

Google File System (GFS)

Hadoop File System (HDFS)

•Single Namespace for entire cluster

•Files are broken up into blocks (typically 64 MB block

size and each block replicated on multiple DataNodes)

•Client [客户] can find location of blocks from

NameNode and accesses data directly from DataNode

(System architecture)

NameNode:

Maps a filename to list of Block IDs

Maps each Block ID to DataNodes containing a replica of the block

DataNode:

Maps a Block ID to a physical location on disk

Data Coherency:

Write-once-read-many access model

Client can only append to existing files

Distributed file systems are good for millions of large files, but have very high overheads and poor

performance with billions of smaller tuples

Sharding: partition data across multiple databases

优点：伸缩性好，易于实现

缺点：由于跨越了数个数据库，所以数据量越大，失败的机率也会越大

▲Parallel [并行] Databases and Data Stores

•Parallel databases run multiple machines (cluster)

•Parallel databases were designed for smaller scale (10s to 100s of machines)

•Replication used to ensure data availability despite machine failure

Supporting scalable data access

•Approach 1: Memcached or other caching mechanisms at application servers, to reduce database

access Limited in scalability

•Approach 2: Partition (“shard”) data across multiple separate database servers

•Approach 3: Use existing parallel databases

•Approach 4: Massively Parallel Key-Value Data Store

Other is sharding systems and key-value stores don’t support many relational features, such as joins, integrity

constraints, etc., across partitions.

▲The MapReduce Paradigm

Platform for reliable, scalable parallel computing

Abstracts issues of distributed and parallel environment from programmer map() reduce()

Paradigm dates back many decades

Data storage/access typically done using distributed file systems or key-value stores

Some specific examples: lecture courseware 11a P41

•

•

•

 MapReduce vs database

MapReduce is widely used for parallel processing

•Google, Yahoo, and 100’s of other companies

•Example uses: compute PageRank, build keyword indices, do data analysis of web click logs, ….

•Allows procedural code in map and reduce functions

•Allows data of any type

Many real-world uses of MapReduce cannot be expressed in SQL

But many computations are much easier to express in SQL because MapReduce is cumbersome for writing

simple queries

Relational operations (select, project, join, aggregation, etc.) can be expressed using MapReduce

SQL queries can be translated into MapReduce infrastructure for execution

•Apache Hive SQL, Apache Pig Latin, Microsoft SCOPE

