Web Technologies and Data Storage 1

A Structure of XML Data
Definition: XML: Extensible Markup Language [T/ RHIRCIES]

eetensible
arkup
anguage

Documents have tags giving extra information about sections of the document
e.g. <title> XML </title> <slide> Introduction --</slide>
Extensible, unlike HTML. Users can define and add new tags, and separately specify how the tag should be
handled for display
XML faifh — 42 XML? | S HFE (runoob.com)
Tag structures make XML a great way to exchange data, and make data (relatively) self-documenting
e.g.
<university>

<department>
<dept_name> Comp. Sci. </dept_name>
<building> Taylor </building>
<budget> 100000 </budget>
</department>
<course>
<course_id> CS-101 </course_id>
<title> Intro. to Computer Science </title>
<dept_name> Comp. Sci </dept_name>
<credits> 4 </credits>
</course>
</university>
Each application area has its own set of standards for representing information and XML has been the basis
for all new generation data interchange formats

XML compared with Relational Data are inefficient (tags which represent schema information are repeated)
but better as a data exchange format.

A XML Document Schema [XML 3C#4%844]
Tag: label for a section of data
Element: section of data beginning with <tagname> and ending with matching </tagname>
Elements must be properly nested
Proper nesting:
<course> - <title> - </title> </course>
Improper nesting:
<course> - <title> --. </course> </title> x
Formally: every start tag must have a unique matching end tag, that is in the context of the same parent
Element and every document must have a single top-level element

https://www.runoob.com/xml/xml-intro.html

Elements can have attributes
<course course_id= “CS-101">
<title> Intro. to Computer Science</title>
<dept name> Comp. Sci. </dept name>
<credits> 4 </credits>
</course>
Attributes are specified by name=value pairs inside the starting tag of an element
An element may have several attributes, but each attribute name can only occur once
<course course_id = “CS-101" credits="4">

A Distinction between subelement and attribute:
In the context of documents, attributes are part of markup, while subelement contents are part of the
basic document contents
Same information can be represented in both ways:
<course course_id= "CS-101"> -+ </course>
<course> <course_id>CS-101</course_id> ‘-</course>
Suggestion: use attributes for identifiers of elements, and use subelements for contents
(EABMHEATERNIRAT, FRFTREARE]

A Namespace

XML data has to be exchanged between organisations. Same tag name may have different meaning in
different organisations, causing confusion on exchanged documents. Specifying a unique string as an
element name avoids confusion.

Using XML Namespaces:

<university xmins:yale="http://www.yale.edu”>

<yale:course>
<yale:course_id> CS-101 </yale:course_id>
<yale:title> Intro. to Computer Science</yale:title>
<yale:dept_name> Comp. Sci. </yale:dept_name>
<yale:credits> 4 </yale:credits>

</yale:course>

</university>

A XML Document Schema
Database schemas constrain what information can be stored and the data types of stored values.
Although XML documents are not required to have an associated schema but schemas are important for
XML data exchange. Otherwise, a site cannot automatically interpret data received from another site.
[RE XML XHEAFER XBEMREY, EXTHIEZGREEEE, SN— MR EBNBREM S — Db S IS N EUE)]
Two mechanisms for specifying XML schema:
Document Type Definition (DTD)
(1)DTD constraints structure of XML data
e\What elements can occur
e\What attributes can/must an element have
e\What subelements can/must occur inside each element, and how many times

(@DTD does not constrain data types
oAll values represented as strings in XML
(3DTD syntax
<IELEMENT element (subelements-specification) >
<IATTLIST element (attributes) >
@)Subelements can be specified as:
names of elements followed by #PCDATA (parsed character data) or EMPTY (no subelements)
ANY (anything can be a subelement)
Example:
<! ELEMENT department (dept_name, building, budget)>
<! ELEMENT dept_name (#PCDATA)>
<! ELEMENT budget (#PCDATA)>
Subelement specification may have regular expressions
<IELEMENT university ((department | course | instructor | teaches)+)>
Notation:

(5Limitations of DTDs:
eNo typing of text elements and attributes so all values are strings, no integers, reals-
eDifficult to specify unordered sets of subelements [38 E L7 F T EE]
Order is usually irrelevant in databases
(A | B)* allows specification of an unordered set, but cannot ensure that each of
A and B occurs only once
¢|Ds and IDREFs are untyped
einstructors attribute should ideally be constrained to refer to instructor elements

Typing of values: integer, string, -+, constraints on min/max values

User-defined, complex types

Many more features, including uniqueness and foreign key constraints, inheritance [#&H1 7 FIMBZAR]
XML Scheme is integrated with namespaces [XML Scheme 5 & F#R% 81 & AK]

XML Schema is itself specified in XML syntax, unlike DTDs

BinERZRT, BIUK

A\ Querying and Transformation
Query and transformation of XML data are closely related, and handled by the same set of tools. Standard
XML querying/transformation languages:
XPath
Simple language consisting of path expressions
XSLT
Simple language designed for translation from XML to XML and XML to HTML
XQuery
An XML query language with a rich set of features

A\ Application Program Interfaces to XML
There are two standard application programming interfaces to XML data:

SAX (Simple API for XML)
Based on parser model, user provides event handlers for parsing events
E.g. start of element, end of element
DOM (Document Object Model)
XML data is parsed into a tree representation
Variety of functions provided for traversing the DOM tree
E.g. Java DOM API provides Node class with methods
getParentNode(), getFirstChild(), getNextSibling()
getAttribute(), getData() (for text node)
getElementsByTagName(), -
Also provides functions for updating DOM tree

A\ Storage of XML Data
Non-relational data stores:
Flat files [SF T 3C14]
Natural for storing XML
But has all problems, e.g. no concurrency, no recovery
XML database [XML ##E)
Database built specifically for storing XML data, supporting DOM model and declarative querying
Relational databases:
String Representation [FZF & & 7R~]
eStore each top-level element as a string field of a tuple in a relational database
eStore values of subelements/attributes to be indexed as extra fields of the relation and build
Indices on these fields (Some database systems support function indices, which use the result of a
function as the key value)
Benefits:
Can store any XML data even without DTD
Allows fast access to individual elements.
Drawbacks:
Need to parse strings to access values inside the elements
Parsing is slow
Tree Representation [#3& 7]
university (id:1)

&

course (id:2) @ adepartment (id: 5)

course id @ © @ ®©@ dept_name
(id: 3) (id: 7)

nodes(id, parent_id, type, label, value)
Benefit:
Can store any XML data, even without DTD
Drawbacks:
Data is broken up into too many pieces, increasing space overheads
Even simple queries require a large number of joins, which can be slow
Map to relations [R5 2 £ &]
Id attribute, relation attribute, parent_id attribute

All subelements that occur only once can become relation attributes

Subelements that can occur multiple times represented in a separate table
Data must be translated into relational form

Advantage: uses mature database systems

Disadvantages: overhead of translating data and queries

A XML Applications
Storing and exchanging data with complex structures [8 2445017 i 12 #2 £03E]

Standard for data exchange for Web services [T Web Bg 55 IR AR]
Data mediation [P EIE P FIRSE]

A Web service is a site providing a collection of SOAP procedures [&2 % & FZ BN]

The Simple Object Access Protocol (SOAP) standard:
Invocation of procedures across applications with distinct databases
XML used to represent procedure input and output
[(EFBEAEHEENNBRFERERE, XMLATRAIERANZ L]
Web Services @ W3C

https://www.w3.org/2002/ws/

