Introduction to Distributed Databases

A\ Distributed System Concepts

(1) A distributed database system consists of loosely coupled sites that share no physical component;
DHREIEERFHLBER S M SAR, XL S A AT YIRAH]

2) Database systems that run on each site are independent of each other;

TN IR DI TRV EEE E R SR IR T

3) Transactions may access data at one or more sites.

E &N —ANE & A = A EUE]

4) The location of data on each individual sites impacts query optimization, concurrency control and
recovery. [BEASMNES FANEFZWMERRL. HEARHMKRE]

(5) Distributed data is governed by factors such as local ownership, increased availability, and performance
issues. [AREURZ AT, EANAYTT A FN M BE o) B B 2= AR]

(6) Distributed Data Independence: Users should not have to know where data is located.

[P A REERIR M A A E EMERIRNALE]

(7) Distributed Transaction Atomicity: Users should be able to write transactions that access and update data
at several sites. [HRESEFHAANIZEBREHOMETRZ MR EBNES]

(8) Transactions are atomic, all changes persist if the transaction commits, or rollback if transaction aborts.
[FSRETEINER—R), MREFSRIMEEIBRET, NREFSLENEE]

(9) If sites are connected by slow networks, these properties are hard to support efficiently.

[nRu BB EWAERE, MNREGR I FFXLEREM]

(10) Users have to be aware of where data is located, i.e. Distributed Data Independence and Distributed

[
(
[
(
[
(

Transaction Atomicity are not supported.

[APRXRFMEREAMNE, AIAXFIHREER MDA RESRF]

(11) For globally distributed sites, these properties may not even be desirable due to administrative
overheads of making locations of data transparent.

FLEsmrhs, BTESFEFRBAESHNEERE XEEHEETRARTE]

A Types of Distributed Databases

Homogeneous [[E/&] - data is distributed but all servers run the same DBMS software.

Heterogeneous [F/&] — different sites run different DBMSs separately and are connected to enable access
to data from multiple sites.

Gateway protocols [9MEFR 3143] - API that exposes DBMS functionality to external applications.

A Architectures

Client Server [& F %578 — a system that has one or more client processes and one or more server processes.
Client sends a query to a server, and the server processes the query returning the result to the client.
Collaborating Server [t {Efz%578] — capable of running queries against local data and executes transactions
across multiple servers.

Middleware [F[a]{4] — one database server can manage queries and transactions spanning across multiple
servers. A layer that executes relational operations on data from other servers but does not maintain any
data.

DERBIEER G FR 1 Sais 7 BI1E% -CSDN & S m X EHEEEME

Client Server — Middleware — Collaborating Server

https://blog.csdn.net/weixin_41744192/article/details/105819847#:~:text=%E5%88%86%E5%B8%83%E5%BC%8F%E6%95%B0%E6%8D%AE%E5%BA%93%E7%B3%BB%E7%BB%9F%E4%BD%93%E7%B3%BB%E7%BB%93%E6%9E%84

A\ Distributed Data Storage
(1) Relations are stored across several sites. To reduce message-passing costs a relation maybe fragmented
across sites. [A T BB EEZBEA, TSR Z AT EKER]
(2) Fragmentation: breaks a relation to smaller relations and stores the fragments at different sites.
Horizontal fragments (HF) [7K3 F E&] - rows of the original data.
Selection queries, fragments by city

Disjoint union of the HF must be equal to the original relation.
Vertical fragments (VF) [& A [&] - columns of the original data.

Projection queries, e.g. fragments of the first two columns

Collection of VF must be a loss-less join decomposition.

| Eid _|[Name _[City |
T2 123 Smith Chicago
HF| T3 124 Smith Chicago
T4 125 Jones Madras
VF

(3) Replication — storing several copies of a relation or fragment. Entire relation can be stored at one or more
sites.

Increased Availability — If a site contains replicated data goes down, then we can use another site.

Faster Query Evaluation — Queries are executed faster by using local copy of a relation instead of going to a
remote site.

(4) Two kinds of replication are Synchronous and Asynchronous replication below:

Site A Site B
R1 R3 R1| |R2

Distributed Catalog Management [9% 3 B R &IE]

Must keep track of how data is distributed across sites. [EREZ£3E 899 7]

Must be able to give a unique identifier to each replica of each fragment/relation. [fR M — I FRIRFT]
Global relation name- <local-name>, <birth-site>
Global replica name — replica id plus global relation name

Site catalog - Describes all objects (fragments, replicas) at a site and keeps track of replicas of relations

created at this site. [= B FAEFF AT B A9EE IR EIA]

To find a relation look up its birth-site catalog [#id 4 S 2 E R 4]

Birth-site never changes even if the relation is moved [H 4 s AZF]

A\ Distributed Transactions
Updating Distributed Data

Synchronous replication [[8125Z %] — all copies of a modified relation are updated before the modifying

transaction commits.

[(ERTEANEFZH, EFEXRANMEEAR]

Asynchronous replication [5725 2] — copies of modified relation are updated over a period of time, and a
transaction that reads different copies of the same relation may see different values.

MERRAMEAE—BRNERER, ERE-XEZNTREANESTESBERENE]

A Synchronous Replication
Voting technique [#%Z 44 — a transaction must write a majority of copies to modify an object; read at least
enough copies to make sure one of the copies is current.
[ESVAERESHEIRTREXANR AEEPEBNEIR, DBHREF—OEIREHENN]
(1) Each copy has a version number, the highest is the most current.
(2) Not attractive and efficient, because reading an object requires reading several copies.

(3) Objects are read more than updated.
e.g. 10 copies, 7 are updatable, 4 are read
Read-any-write-all technique — a transaction can read only one copy, but must write to all copies.
[EHREEM—EIR, ELRENRBEAR]
(1) Reads are faster than writes especially if it's a local copy
(
(

Read-any-write-all cost - Before an update transaction can commit, it must lock all copies

2) Attractive when reads occur more than writes
3) Most common technique

(1) Transaction sends lock requests to remote sites and waits for the locks to be granted
(During a long period, it continues to hold all locks)
(2) If there is a site or communication failure then transaction cannot commit until all sites are recovered
(3) Committing creates several additional messages to be sent as part of a commit protocol
ELEFEEGR, FTEHEIZIRD -
A Asynchronous Replication
Allows modifying transactions to commit before all copies have been changed.
(T EERAA R AZ AR IEHES]
Users must be aware of which copy they are reading, and that copy may be out-of-sync for short period of
time.
Two approaches: Primary Site and Peer-to-Peer replication.

Peer to Peer Asynchronous Replication- More than one copy can be designated as updateable (master copy).
Changes to a master copy must be propagated to other copies somehow. Conflict resolution is used to deal
with changes at different sites.

(TS EZ N EIAATEMEIAR, WERIANESLAUEM G RXEEIEMBEA, ARBRATLRERE MG SHEN]
Each master is allowed to update only one fragment of the relation, and any two fragments updatable by
different masters are disjoint. Updating rights are held by one master at a time.
[ENEINRRAATERREN—TRER, FRNETRETNETE N REAEEN, EFR—KE— master 5]

Primary Site Asynchronous Replication
Primary site — one copy of a relation is the master copy.
[RAETNEIAZRhREEN]
Secondary site- replicas of the entire relation are created at other sites. They cannot be updated.
(XEATNEIAZREESNEN, TREWER
Method: Users register / publish a relation at the primary site and subscribe to a fragment of the relation at
the secondary site.
Changes to the primary copy transmitted to the secondary copies are done in two steps:
[1] capture changes made by committed transactions [B2 X =& A E 2]
[2] apply these changes [FIiX)

Capture
*Log Based Capture [#T H &7 - the log maintained for recovery is used to generate a Change
Data Table (CDT)
Procedural Capture [#2]Ffi%k] — A procedure that is invoked [if] by the DBMS which takes a snapshot of
the primary copy
Log based capture is generally better because it deals with changes to the data and not the entire database.
However, it relies on log details which may be system specific.

Apply
The Apply process at the secondary site periodically obtains a snapshot of the primary copy or changes to
the CDT table from the primary site, and updates the copy. (This is an action from capture)

Replica can be a view over the modified relation.

Log-Based Capture plus continuous Apply minimizes delay in propagating changes.
ETESN@ERINEESNN B/ ML T FEERAIER]

Procedural Capture plus application-driven Apply is the most flexible way to process updates.
FEFmRIN LN BREFRN BELEEFRRRENTR]

A\ Distributed Query Processing
Distributed Queries
Example query with a relation S (fragmented at Shanghai and Tokyo sites):

XTEEHEXNEMIER:

(1) Horizontally Fragmented [##54>84]:
Tuples with rating < 5 at Shanghai, >= 5 at Tokyo. When calculating average, must compute sum and count
at both sites. If WHERE contained just S.rating > 6, just one site.

(2) Vertically Fragmented [& 2>84]:
sid and rating at Shanghai, sname and age at Tokyo, tid at both. Joining two fragments by a common tid
and execute the query over this reconstructed relation

(3) Replicated [EE Y]
Since relation is copied to more than one site, choose a site based on local cost.

Distributed Joins

SELECT * London Paris
FROM Sailors S, Reserves R Reserves
WHERE S.sid = R.sid 500 1,000

Fetch as Needed [fR1#EFHE EF£E], i.e. ship blocks of Reserves to London and perform join with a join
algorithm.
Ship to One Site [&1XZ|—uh 5] | i.e. Ship entire Reserves to London and perform join with a join algorithm.
Semi Joins and Bloom Joins: assume that some tuples in Reserves do not join with any tuples in Sailors.
Need to identify Reserve tuples that guarantee not to join with any Sailors tuples.
Tradeoff the cost of computing and shipping projection for cost of shipping full Reserves relation.
Bloom Join is similar to Semi Join but there is a bit-vector shipped in the first step instead of a projection

Online source:
Semi join and Bloom join are two joining methods used in query processing for distributed databases. When
processing queries in distributed databases, data needs to be transferred between databases located in
different sites. This could be an expensive operation depending on the amount of data that needs to be
transferred. Therefore, when processing queries in a distributed database environment, it is important to
optimize the queries to minimize the amount of data transferred between sites.

: Semi join and bloom join are two methods that can be used to reduce the amount of data transfer
and perform efficient query processing.

: Even though both semi join and bloom join methods are used to minimize the amount of data
transferred between the sites when executing queries in a distributed database environment, bloom join
reduces the amount of data (number of tuples) transferred compared to semi join by utilizing the concept
of bloom filters, which employ a bit vector to determine set memberships. Therefore using bloom join will
be more efficient than using semi join.

Reference: Difference Between Semi Join and Bloom Join | Compare the Difference Between Similar Terms

Optimization of distribution query:

Consider all plans, pick cheapest; similar to centralized optimization.
Query site constructs a global plan, with suggested local plans describing processing at each site. If a site
can improve suggested local plan, free to do so.

A\ Concurrency Control in Distributed Databases
A Distributed Transactions [R E %]
(1) Transaction is submitted at one site but can access data at other sites.
(2) Each site has its own local transaction manager and transaction coordinator.
(3) Function of the transaction manager is to ensure the AC/D properties of those transactions that execute
at that site [F S EIERNINEE T RA LU~ EHITHESM ACID B
1. Maintaining a log for recovery purposes.
2. Participating in an appropriate concurrency-control scheme to coordinate the concurrent
execution of the transactions executing at that site.
[B5ELHFRIEHTR, MHBAEIZESTHESHIT LT
3. Failure recovery.

Transaction coordinator [551/418=2§] is responsible for:

(1) Starting the execution of the transaction;

(2) Breaking the transaction into a number of sub-transactions;

(3) Distributing these sub-transactions to the appropriate sites for execution;

(4) Coordinating the termination of the transaction, which may result in the transaction being committed at
all sites or aborted at all sites.

@\ /@ transaction
coordinator

e ;
@ 5 = % \@ transaction
manager

computer 1 computer n

https://www.differencebetween.com/difference-between-semi-join-and-vs-bloom-join/

Lock management [$iETE=5] can be distributed across many sites:

(1) Single-lock manager (Centralized) — One site does all the locking; vulnerable if one site goes down.

(2) Primary Copy — Only one copy of each object is designated a primary copy, requests to lock/unlock are
handled by lock manager at the primary site regardless where the copy is stored.

(3) Distributed lock manager — Requests to lock/unlock a copy of an object stored at a site are handled by
the lock manager at the site where the copy is stored.

Distributed Deadlock
Each site maintains local waits-for graph, and a cycle in a local graph indicates a deadlock.
A global deadlock might exist even if the local graphs contain no cycles.
Three algorithms of distributed deadlock detection
Centralized [£# 3] — send all local graphs to one site that is responsible for deadlock detection.
Hierarchal [[EZRT\] — organize sites into a hierarchy and send local graphs to parent in the hierarchy.
Timeout [#BHFT] — abort transaction if it waits too long.

T T2 T T2 T T2
Site A Site B

Global

A\ Failure Recovery in Distributed Databases
Recovery in distributed DBMSs is more complicated than in centralized DBMSs
e.g. failure of communication links; failure of a remote site at which a sub transaction is executing.
All of the sub transactions must commit or not commit at all. This must be guaranteed despite link failures.
Need a commit protocol — the most common one is Two-Phase Commit protocol.
A log is maintained at each site, as in a centralized DBMS, and commit protocol actions are additionally
logged.

Two Phase Commit (2PC)

The site at which the transaction originated is the coordinator. Other sites at which sub transactions are
executed are subordinates. [REF SR EMMERE, T FESHNEMLSENELES]

When a user decides to commit a transaction, the commit command is sent to the coordinator for the
transaction. This initiates the 2PC:

Coordinator sends a prepare message to each subordinate; When subordinate receives a prepare
message, it decides to abort or commit its sub transaction; Subordinate forces writes an abort or ready log
record and sends a no or yes message to coordinator accordingly.

If coordinator receives a yes message from all subordinates, force writes a commit log record and
sends commit message to all subordinates. Else force-writes an abort log record and sends an abort message;
Subordinates force-write abort or commit log record based on the message they receive.

(In some implementations, after the two phases, subordinates send acknowledgement message [#ARIAT XX
B to coordinator; after coordinator receives ack messages from all subordinates it writes an end log for the
transaction)

Failure of a participating site [Z 53} & F9#E]
(1) Examine its own logs, if there is commit or abort log record for transaction T, then redo/undo T
respectively.
(2) The log contains a <ready T> record, repeatedly contact the coordinator or other active sites to find the
status of T, then performs redo/undo accordingly and write commit/abort log records depending on

coordinator’s response;
(3) The log contains no control records (abort, commit, ready) concerning T, undo.
Failure of the coordinator [t 2&AY 5 W]
1) Participating sites must decide the fate of T.
2) If an active site contains a <commit T>/<abort T> record in its log, then T must be committed/aborted.
3) If some active site does not contain a <ready T> , preferable to abort T.

o~ o~ o~ —

4) If active sites have a <ready T> record in their logs, but no additional control records (such as <abort T>
or <commit T>), it is impossible to determine if a decision has been made and what that decision is, until
the coordinator recovers. (in-doubt transaction)

If locking is used, an in-doubt transaction T may hold locks on data at active sites. Such a situation is
undesirable [~ATJE], because it may be hours or days before coordinator is again active. This situation is
called the blocking problem, because T is blocked pending the recovery of coordinator site.

Solution is in the next page:

(1) Use <ready T, L> log record, where L is a list of all write locks held by the transaction T when the log
record is written. At recovery time, after performing local recovery actions, for every in-doubt transaction T,
all the write locks noted in the <ready T, L> log record (read from the log) are reacquired. (W& H &

(2) Can also be solved using the 3-phase commit protocol (under certain situations) (#x&[E1;#)

Recovery from Network Partitions [MM 24 X1k 5]
The coordinator and all its participants remain in one partition.
In this case, the failure has no effect on the commit protocol.
The coordinator and its participants belong to several partitions.
From the viewpoint of the sites in one of the partitions, it appears that the sites in other partitions have
failed.
Sites that are not in the partition containing the coordinator simply execute the protocol to deal with
failure of the coordinator. [RE B &R AI D X F 8938 = R BHITIMCR IR ERR FIEE]
The coordinator and the sites that are in the same partition: the coordinator follow the usual commit
protocol, assuming that the sites in the other partitions have failed.

(BRI T E— 2 X PRy < AR EEE RN, RRHEArXPrKELK K]

