Failure Recovery

A\ Failure Classification [#f&E 4> 3]
Transaction failure:
Logical errors: transaction cannot complete due to some internal error condition
System errors: the database system must terminate an active transaction due to an error condition
System crash: a power failure or other hardware or software failure causes the system to crash.
Fail-stop assumption: non-volatile storage contents are assumed to not be corrupted by system crash
Database systems have numerous integrity checks to prevent corruption of disk data
Disk failure: a head crash or similar disk failure destroys all or part of disk storage
Destruction is assumed to be detectable: disk drivers use checksums to detect failures

A Recovery algorithms have two parts:

Actions taken during normal transaction processing to ensure enough information exists to recover from
failures [7E IF % 255 R IR EAIE) O T (R 170 R 05 015 8 LU AR i 58 T SRR 0 1 1)

Actions taken after a failure to recover the database contents to a state that ensures atomicity, consistency

and durability [FEX5 SREE AR BIBHRIE T 1. —BLME RIS A M ROIRZS S UUR BT RER 91216

A Storage Structure [fFfi54544]
Volatile storage [5 k1 F g 2%
does not survive system crashes
examples: main memory, cache memory
Non-volatile storage [JE 5 kM]:
survives system crashes
examples: disk, tape, flash memory, non-volatile (battery backed up) RAM
but may still fail, losing data
Stable storage [f&7776E]:
a mythical form of storage that survives all failures
usually approximated by maintaining multiple copies on distinct nonvolatile media

A Data Access [##EFE]

Physical blocks are those blocks residing on the disk.

Buffer blocks are the blocks residing temporarily in main memory.

Block movements between disk and main memory are initiated through the following two operations:
input(B) transfers the physical block B to main memory.

output(B) transfers the buffer block B to the disk, and replaces the appropriate physical block there.
buffer

Buffer Block A —*DJ’MhD 7
Buffer Block B ——Y ————»[] B
output(B) | |
We assume, for simplicity, that each data item fits in, and is read(X) i
write

stored inside, a single block.

X[XL
Y1 Ij/

work area work area
of T, of T,

memory disk

Each transaction Ti has its private work-area in which local copies of all data items accessed and updated by
it are kept.
Ti's local copy of a data item X is called xi.
Transferring data items between system buffer blocks and its private work-area done by:
read(X) assigns the value of data item {X} to the local variable xi.
write(X) assigns the value of local variable xi to data item {X} in the buffer block.
Note: output (BX) need not immediately follow write(X). System can perform the output operation when
it deems fit.
Transactions
Must perform read(X) before accessing X for the first time (subsequent reads can be from local copy)
write(X) can be executed at any time before the transaction commits

A Recovery and Atomicity [tk 8 5 85T 4]

To ensure atomicity despite of failures, we first output information describing the modifications (e.g. logs) to
stable storage without modifying the database itself.

A log is kept on stable storage.

The log is a sequence of log records, and maintains a record of update activities on the database.

When transaction Ti starts, it registers itself by writing a <Ti start> log record

Before Ti executes write(X), a log record <Ti, X, V1, V2> is written, where V1 is the value of X before the write
(the old value), and V2 is the value to be written to X (the new value).

When Ti finishes it last statement, the log record <Ti commit> or <Ti abort> is written.

Two approaches using logs:
Deferred [#E1R] database modification
performs updates to buffer/disk only at the time of transaction commit.
Immediate [3xZ R[] database modification
allows updates of an uncommitted transaction to be made to the
transaction commits

Log Write Output

<T,start>

<T, A, 1000, 950>
<T,, B, 2000, 2050>

A =950
B = 2050 Bc output before
. T; commits
ShEommity (immediate)
<T, start>
<T,, C, 700, 600>
C =600

B, output after
Ty commits

<T, commit>
(deferred)

= Note: By denotes block containing X.

ATransaction Commit
A transaction is said to have committed when its commit log record is output to stable storage.
all previous log records of the transaction must have been output already.
Writes performed by a transaction may still be in the buffer when the transaction commits, and may be
output later.

A Concurrency Control and Log-Based Recovery [&#Z#I&ETFHFRE]
With concurrent transactions, all transactions share a single disk buffer and a single log
A buffer block can have data items updated by one or more transactions
We assume that if a transaction Ti has modified an item, no other transaction can modify the same item until
Ti has committed or aborted, i.e. using the strict two-phase locking protocol. (Z~ 9] El AT EE— item)
Log records of different transactions may be interspersed (1#5) in the log.

Undo [#$5] of a log record <Ti, X, V1, V2> writes the old value V1 to X

Undo (Ti) restores the values of all data items updated by Ti to their old values, going backwards from the
last log record for Ti.

(1) Each time a data item X is restored to its old value V, a special log record <Ti, X, V> is written out.

(2) When undo of a transaction is complete, a log record <Ti abort> is written out.

Redo [E{#] of a log record <Ti, X, V1, V2> writes the new value V2 to X (again)

Redo (Ti) sets the value of all data items updated by Ti to the new values, going forward from the first log
record for Ti.

(1) No additional logging is done in this case

A Recovering after failure:
Transaction Ti needs to be - if the log
contains the record <Ti start>,
but does not contain either the record <Ti commit> or <Ti abort>.
Transaction Ti needs to be - if the log
contains the records <Ti start>
and contains the record <Ti commit> or <Ti abort>
Tips: MNRES Ti L= FHRHEH undone, <Ti commit >IERFEAETH, RERETERM, BAMK
WHRE Ti Bf1E#E redone, 1X#H) redone S EMATE RIGNIRIE, BERERENTER, RAEED
. BERRMRRE, ERAMECTRERE.
Example:
<T, start> <T, start> <T, start>

<Ty, A, 1000, 950> <T,, A, 1000, 950> <T,, A, 1000, 950>
<T,, B, 2000, 2050> <T,, B, 2000, 2050> <T,, B, 2000, 2050>

<T, commit> <T, commit>
<T, start> <T, start>
<T,, C, 700, 600> <T;, C, 700, 600>
<T, commit>
(a) (b) (c)

Recovery actions in each case above are:

(a) undo (T0): Bis restored to 2000 and A to 1000, and log records <T0, B, 2000>, <T0, A, 1000>, <T0, abort>
are written out

(b) redo (T0) and undo (T1): A and B are set to 950 and 2050 and C is restored to 700. Log records <T1, C,
700>, <T1, abort> are written out.

(c) redo (T0) and redo (T1): A and B are set to 950 and 2050 respectively. Then C is set to 600.

A Checkpoints [12%5 =]
Redoing/undoing all transactions recorded in the log can be very slow (processing the entire log is time-
consuming if the system has run for a long time). So, we might unnecessarily redo transactions which have

already output their updates to the database long time ago. (5 & It EI AR A M EE A9 TE)

Streamline recovery procedure by periodically performing checkpointing:

(1) Output all log records currently residing in main memory onto stable storage.

(2) Output all modified buffer blocks to the disk.

(3) Write a log record <checkpoint L> onto stable storage where Lis a list of all transactions which are active
at the time of checkpointing.

(4) All updates are stopped while doing checkpointing.

example
< SR AT i
T 5 [B]#Z 18 checkpoint
Ty
—_
Ty
'_
Ts
—
T
|—
checkpoint system failure

In this example, T1 can be ignored (updates already output to disk due to checkpoint), T2, T3 redone and
T4 undone.

A Recovery Algorithm
Logging (during normal operation)
<Ti start> at transaction start
<Ti, X}, V1, V2> for each update, and
<Ti commit> at the end of transaction
Transaction rollback (during normal operation)
Let Ti be the transaction to be rolled back
Scan log backwards from the end, and for each log record of Ti of the form <Ti, X|, V1, V2>
perform the undo by writing V1 to X],
write a log record <Ti , Xj, V1> (such log records are called compensation (#M%) log records)
Once the record <Ti start> is found stop the scan and write the log record <Ti abort>

Recovery from failure have two phases:

[1] Redo phase: replay updates of all transactions, whether they committed, aborted, or are incomplete, at
and after checkpoint

[2] Undo phase: undo all incomplete transactions

Redo phase:
Find last <checkpoint L> record, and set the undo-list to L (undo-list = L)
Scan forward from above <checkpoint L> record:
Whenever a record <Ti, X], V1, V2> is found, redo it by writing V2 to X|
Whenever a log record <Ti start> is found, add Ti to undo-list
Whenever a log record <Ti commit> or <Ti abort> is found, remove Ti from undo-list
Undo phase:
Scan log backwards from the failure point:
Whenever a log record <Ti, X], V1, V2> is found where Ti is in undo-list (same as transaction rollback):
perform undo by writing V1 to X].

write a log record <Ti , X|, V1>

Whenever a log record <Ti start> is found where Ti is in undo-list:
Write a log record <Ti abort>
Remove Ti from undo-list

Stop when undo-list is empty! &
i.e. <Ti start> has been found for every transaction in undo-list

After undo phase completes, normal transaction processing can commence (F748) again.
example

Start log records
found for all
transactions in
undo list

Beginning of log
older <T, start>
<To, B, 2000, 2050>
<T; start>

T, rollback

<checkpoint {To, T/}> (during normal Redo Pass
<T;, C, 700, 600> opergtion)
<T, commit> begins
<T,start>
Endoflog | | 7, A 500, 400> Ty rollback
1 h S ’ complete
at crash! <T,, B, 2000>
S<Tpabort> T, is incomplete
Log records at crash Undo list: T, Undo Pass
added during <T2 A, 500>
recovery <T;abort> T, rolled back

J

v in undo pass
newer

