Concurrency Control

A Concurrency Control [F %54

A database must provide a mechanism that will ensure that all possible schedules are either conflict or view
serializable, and are recoverable and preferably cascade less.

A policy in which only one transaction can execute at a time generates serial schedules, but provides a poor
degree of concurrency

Testing a schedule for serializability after it has executed is too late!
Goal - to develop concurrency control protocols [%= ##iX] that will assure serializability.

A Lock-Based Protocols [EF 8 E &)
A lock is a mechanism to control concurrent access to a data item [8{2— I EIRTRY I & 375 5 B4 5]
Data items can be locked in two modes:
(1) exclusive (X) mode - Data item can be both read as well as written.
(X-lock is requested using lock-X instruction)
(2) shared (S) mode - Data item can only be read.
(S-lock is requested using lock-S instruction)
Lock requests are made to concurrency-control manager. Transaction can proceed only after request is
granted.
Lock-compatibility matrix [S{48 214 55 F%]:

5 X

S true false

X | false | false

A transaction may be granted a lock on an item if the requested lock is compatible with locks already held
on the item by other transactions. (FEZ& %)

Any number of transactions can hold shared locks on an item.

But if any transaction holds an exclusive lock [##4${] on the item no other transactions may hold any lock
on the item.

If a lock cannot be granted, the requesting transaction is made to wait till all incompatible locks held by
other transactions have been released. The lock is then granted. (15T E £ A M IBRREEIESZH)

Example: T2 lock-S(A);

read (A);

unlock(A);

lock-S(B);

read (B);

unlock(B);

display(A+B)
A locking protocol is a set of rules followed by all transactions while requesting and releasing locks.
Locking protocols restrict the set of possible schedules.

Attention:
The potential for deadlock exists in most locking protocols. Deadlocks are a necessary evil.

T T,
lock-x (B)

reacl (B) / Process 1 \

B:=B-50

. Resource 1 Resource 2
write (B)
lock-s (A)
read (A) \ Process 2 /
lock-s (B)
lock-x (A)

Deadlock in Operating System
NeitherT3 norT4 can make progress — executing

lock-S(B) causes T4 to wait for T3 to release its lock on B, while executing lock-X(A) causesT3 to wait forT4
to release its lock on A.

To handle a deadlock one of T3 orT4 must be rolled back and its locks released.

Starvation [#Jl##] is also possible if concurrency control manager is badly designed. For example:
The most common solution to recover from deadlock is to roll back one or more transactions
[MFES IR E B RE LR T EEBIR— P E) transaction]
If a transaction is repeatedly chosen as the victim, it will never complete its task, hence starvation.
(AR — transaction R BXEFARZESE, ©RKELETHRENTES, MSEINEK]
Concurrency control manager can be designed to prevent starvation.
The most common solution is to include the number of rollbacks in the cost factor for selecting a victim.
More detail about deadlock & starvation: Starvation and Deadlock (tutorialspoint.com)

Two phases of Locking Protocol:
(Two-phase locking does not ensure freedom from deadlocks)
Phase 1: Growing Phase [}&4+ /I EX]
transaction may obtain locks
transaction may not release locks
Phase 2: Shrinking Phase [48 R/ EX]
transaction may release locks
transaction may not obtain locks
The protocol assures serializability. It can be proved that the transactions can be serialized in the order of
their lock points (i.e. the point where a transaction acquired its final lock).

Cascading roll-back is possible under two-phase locking. To avoid this, follow a modified protocol called
strict two-phase locking. Here a transaction must hold all its exclusive locks till it commits/aborts.

Rigorous two-phase locking is even stricter: here all locks (including the shared locks) are held till
commit/abort. In this protocol transactions can be serialized in the order in which they commit.

Lock Conversions [$i#5#]

— First Phase:

can acquire a lock-S on item

can acquire a lock-X on item

can convert a lock-S to a lock-X ()
— Second Phase:

can release a lock-S

can release a lock-X

https://www.tutorialspoint.com/starvation-and-deadlock

can convert a lock-X to a lock-S ()

A Automatic Acquisition of Locks [B @1 #kBL$i] (algorithm)
A transaction Ti issues the standard read/write instruction, without explicit locking calls.
All locks are released after commit or abort
The operation read(D) is processed as:
It Ti has a lock on D then:
read(D)
else:
begin, if necessary, wait until no other transaction has a lock-X on D:
grant Ti a lock-S on D;
read(D)
end

The operation write(D) is processed as:
It Ti has a lock-X on D then:
write(D)
else:
begin, if necessary, wait until no other transactions have any lock on D:
It Ti has a lock-S on D then:
upgrade lock on D to lock-X
else:
grant Tia lock-X on D
write(D)
end

A Implementation of Locking [$iE#IS231]

A lock manager can be implemented as a separate process to which transactions send lock and unlock
requests.

The lock manager replies to a lock request by sending a lock grant message, or a message asking the
transaction to roll back, in case of a deadlock.

The requesting transaction waits until its request is answered.

The lock manager maintains a data structure called a lock table to record granted locks and pending requests.
The lock table is usually implemented as an in-memory hash table indexed on the name of the data item
being locked.

1912

 h

T23

14
 Teo
T1 T23
144
T
T8

Lock Table (hash table) s

(LITTTTTTITITITIT LTI]

- granted
D waiting

A Deadlock Handling [FE454b3E]

example
T, T,

lock-X on A
write (A)

lock-X on B

write (B)

wait for lock-X on A
wait for lock-X on B

Deadlock prevention protocols ensure that the system will never enter into a deadlock state.

Some prevention strategies:

(1) Require that each transaction locks all its data items before it begins execution (pre-declaration). $iE
(2) Impose partial ordering of all data items and require that a transaction can lock data items only in the
order specified by the partial order (graph-based protocol). HEFEH 4T

Use transaction timestamps for the sake of deadlock prevention alone:

— non-preemptive
older transaction may wait for younger ones but younger transactions never wait for older ones; they are
rolled back instead.
Result: a transaction may die several times before acquiring needed data item

— preemptive

older transaction wounds (forces rollback) of younger transaction instead of waiting for it. Younger
transactions may wait for older ones.
Result: may be fewer rollbacks than wait-die scheme.
Both in wait-die and wound-wait schemes, a rolled back transaction is restarted with its original timestamp.
Older transactions thus have precedence over newer ones, and starvation is hence avoided. [Elltt, EEHY

SFMETRHMNES, MmgER 7 IIH]

Another approach is the Lock Timeout-Based Schemes:

a transaction waits for a lock only for a specified amount of time; after that, the wait times out and the
transaction is rolled back.

In this way, deadlocks are not possible, simple to implement but starvation is possible. Also, difficult to

determine good value of the timeout interval.

A Deadlock Detection [JE#{#&]

Deadlocks can be described as a wait-for graph, which consists of a pair G = (V, E), V is a set of vertices (all
the transactions in the system), E is a set of edges; each element is an ordered pair Ti ->Tj.

(e DIEEAR A — N ERFE, EH—XG = (V, Ddg, VRE—EANSESETNMEES), ER—HLS I TR —
MNEFX Ti ->Tj]

If Ti -> Tjisin E, then there is a directed edge from Ti to Tj, implying that Ti is waiting for Tj to release a data
item.

[BORTi->TEEHR, BAFE—KMTIETHERL, BERE Ti EESRF T BR— P E4ET]

When Ti requests a data item currently being held by Tj, then the edge (Ti ->Tj) is inserted in the wait-for
graph. This edge is removed only when Tj is no longer holding a data item needed by Ti.

[% TiiER T) YETHFA BRI, AFGETEANLT ->T), REY T AEEFE Ti R EOHEEmE, 7 MERX&i]

Wait-for graph without a cycle Wait-for graph with a cycle

The system is in a deadlock state if and only if the wait for graph has a cycle. Must invoke a deadlock
detection algorithm periodically to look for cycles.

Deadlock Recovery
When deadlock is detected, three actions need to be taken:
[1] Some transaction will have to rolled back (made a victim) to break deadlock. Select the transaction as
victim that will incur minimum cost. (& &/ME, EREEZENES)
[2] Rollback -- determine how far to roll back transaction: (£ ERHT)
Total rollback: Abort the transaction and then restart it.
More effective to roll back transaction only as far as necessary to break deadlock.
[3] Starvation happens if same transaction is always chosen as victim. (£ TR B AR A E)
Include the number of rollbacks in the cost factor to avoid starvation.

